Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(5): 1177-1190.e13, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730856

RESUMO

Immune checkpoint therapy (ICT) shows encouraging results in a subset of patients with metastatic castration-resistant prostate cancer (mCRPC) but still elicits a sub-optimal response among those with bone metastases. Analysis of patients' bone marrow samples revealed increased Th17 instead of Th1 subsets after ICT. To further evaluate the different tumor microenvironments, we injected mice with prostate tumor cells either subcutaneously or intraosseously. ICT in the subcutaneous CRPC model significantly increases intra-tumoral Th1 subsets and improves survival. However, ICT fails to elicit an anti-tumor response in the bone CRPC model despite an increase in the intra-tumoral CD4 T cells, which are polarized to Th17 rather than Th1 lineage. Mechanistically, tumors in the bone promote osteoclast-mediated bone resorption that releases TGF-ß, which restrains Th1 lineage development. Blocking TGF-ß along with ICT increases Th1 subsets and promotes clonal expansion of CD8 T cells and subsequent regression of bone CRPC and improves survival.


Assuntos
Linhagem da Célula , Imunoterapia , Linfócitos T Auxiliares-Indutores/citologia , Microambiente Tumoral , Animais , Antígenos/metabolismo , Neoplasias Ósseas/secundário , Antígeno CTLA-4/metabolismo , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Clonais , Citocinas/metabolismo , Modelos Animais de Doenças , Memória Imunológica/efeitos dos fármacos , Ipilimumab/farmacologia , Masculino , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Análise de Sobrevida , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/efeitos dos fármacos
2.
Cell ; 167(2): 397-404.e9, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667683

RESUMO

Antibody blockade of the inhibitory CTLA-4 pathway has led to clinical benefit in a subset of patients with metastatic melanoma. Anti-CTLA-4 enhances T cell responses, including production of IFN-γ, which is a critical cytokine for host immune responses. However, the role of IFN-γ signaling in tumor cells in the setting of anti-CTLA-4 therapy remains unknown. Here, we demonstrate that patients identified as non-responders to anti-CTLA-4 (ipilimumab) have tumors with genomic defects in IFN-γ pathway genes. Furthermore, mice bearing melanoma tumors with knockdown of IFN-γ receptor 1 (IFNGR1) have impaired tumor rejection upon anti-CTLA-4 therapy. These data highlight that loss of the IFN-γ signaling pathway is associated with primary resistance to anti-CTLA-4 therapy. Our findings demonstrate the importance of tumor genomic data, especially IFN-γ related genes, as prognostic information for patients selected to receive treatment with immune checkpoint therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Interferon gama/genética , Melanoma/tratamento farmacológico , Receptores de Interferon/genética , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Técnicas de Silenciamento de Genes , Humanos , Ipilimumab , Melanoma/genética , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/genética , Linfócitos T/imunologia , Receptor de Interferon gama
3.
Immunity ; 52(1): 151-166.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31924474

RESUMO

In addition to helper and regulatory potential, CD4+ T cells also acquire cytotoxic activity marked by granzyme B (GzmB) expression and the ability to promote rejection of established tumors. Here, we examined the molecular and cellular mechanisms underpinning the differentiation of cytotoxic CD4+ T cells following immunotherapy. CD4+ transfer into lymphodepleted animals or regulatory T (Treg) cell depletion promoted GzmB expression by tumor-infiltrating CD4+, and this was prevented by interleukin-2 (IL-2) neutralization. Transcriptional analysis revealed a polyfunctional helper and cytotoxic phenotype characterized by the expression of the transcription factors T-bet and Blimp-1. While T-bet ablation restricted interferon-γ (IFN-γ) production, loss of Blimp-1 prevented GzmB expression in response to IL-2, suggesting two independent programs required for polyfunctionality of tumor-reactive CD4+ T cells. Our findings underscore the role of Treg cells, IL-2, and Blimp-1 in controlling the differentiation of cytotoxic CD4+ T cells and offer a pathway to enhancement of anti-tumor activity through their manipulation.


Assuntos
Granzimas/imunologia , Neoplasias/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Humanos , Interferon gama/imunologia , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/citologia , Microambiente Tumoral/imunologia
4.
Immunity ; 50(2): 477-492.e8, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30737146

RESUMO

Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Interferon gama/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Deleção Clonal/efeitos dos fármacos , Deleção Clonal/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
5.
Proc Natl Acad Sci U S A ; 121(27): e2404661121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923991

RESUMO

Immune checkpoint therapies (ICT) improve overall survival of patients with cancer but may cause immune-related adverse events (irAEs) such as myocarditis. Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin fusion protein (CTLA-4 Ig), an inhibitor of T cell costimulation through CD28, reverses irAEs in animal models. However, concerns exist about potentially compromising antitumor response of ICT. In mouse tumor models, we administered CTLA-4 Ig 1) concomitantly with ICT or 2) after ICT completion. Concomitant treatment reduced antitumor efficacy, while post-ICT administration improved efficacy without affecting frequency and function of CD8 T cells. The improved response was independent of the ICT used, whether CTLA-4 or PD-1 blockade. The frequency of Tregs was significantly decreased with CTLA-4 Ig. The resulting increased CD8/Treg ratio potentially underlies the enhanced efficacy of ICT followed by CTLA-4 Ig. This paradoxical mechanism shows that a CTLA-4 Ig regimen shown to reduce irAE severity does not compromise antitumor efficacy.


Assuntos
Antígeno CTLA-4 , Imunoterapia , Animais , Camundongos , Imunoterapia/métodos , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T Reguladores/imunologia , Linhagem Celular Tumoral , Abatacepte/uso terapêutico , Abatacepte/farmacologia , Feminino , Humanos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
6.
Proc Natl Acad Sci U S A ; 119(32): e2200879119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925889

RESUMO

The value of anti-CTLA-4 antibodies in cancer therapy is well established. However, the broad application of currently available anti-CTLA-4 therapeutic antibodies is hampered by their narrow therapeutic index. It is therefore challenging and attractive to develop the next generation of anti-CTLA-4 therapeutics with improved safety and efficacy. To this end, we generated fully human heavy chain-only antibodies (HCAbs) against CTLA-4. The hIgG1 Fc domain of the top candidate, HCAb 4003-1, was further engineered to enhance its regulatory T (Treg) cell depletion effect and to decrease its half-life, resulting in HCAb 4003-2. We tested these HCAbs in in vitro and in vivo experiments in comparison with ipilimumab and other anti-CTLA4 antibodies. The results show that human HCAb 4003-2 binds human CTLA-4 with high affinity and potently blocks the binding of B7-1 (CD80) and B7-2 (CD86) to CTLA-4. The results also show efficient tumor penetration. HCAb 4003-2 exhibits enhanced antibody-dependent cellular cytotoxicity function, lower serum exposure, and more potent anti-tumor activity than ipilimumab in murine tumor models, which is partly driven by a substantial depletion of intratumoral Tregs. Importantly, the enhanced efficacy combined with the shorter serum half-life and less systemic drug exposure in vivo potentially provides an improved therapeutic window in cynomolgus monkeys and preliminary clinical applications. With its augmented efficacy via Treg depletion and improved safety profile, HCAb 4003-2 is a promising candidate for the development of next generation anti-CTLA-4 therapy.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Imunoterapia , Neoplasias , Linfócitos T Reguladores , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antígeno CTLA-4/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/farmacologia , Ipilimumab/farmacologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia
7.
Cancer ; 130(11): 1991-2002, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404184

RESUMO

BACKGROUND: This study investigated the safety and efficacy of an anti-CTLA-4 monoclonal antibody (CS1002) as monotherapy and in combination with an anti-PD-1 monoclonal antibody (CS1003) in patients with advanced/metastatic solid tumors. METHODS: The phase 1 study involved phase 1a monotherapy dose-escalation (part 1) and phase 1b combination therapy dose escalation (part 2) and expansion (part 3). Various dosing schedules of CS1002 (0.3, 1, or 3 mg/kg every 3 weeks, or 3 mg/kg every 9 weeks) were evaluated with 200 mg CS1003 every 3 weeks in part 3. RESULTS: Parts 1, 2, and 3 included a total of 13, 18, and 61 patients, respectively. No dose-limiting toxicities or maximum tolerated doses were observed. Treatment-related adverse events (TRAEs) were reported in 30.8%, 83.3%, and 75.0% of patients in parts 1, 2, and 3, respectively. Grade ≥3 TRAEs were experienced by 15.4%, 50.0%, and 18.3% of patients in each part. Of 61 patients evaluable for efficacy, 23 (37.7%) achieved objective responses in multiple tumor types. Higher objective response rates were observed with conventional and high-dose CS1002 regimens (1 mg/kg every 3 weeks or 3 mg/kg every 9 weeks) compared to low-dose CS1002 (0.3 mg/kg every 3 weeks) in microsatellite instability-high/mismatch repair-deficient tumors, melanoma, and hepatocellular carcinoma (50.0% vs. 58.8%, 14.3% vs. 42.9%, and 0% vs. 16.7%). CONCLUSION: CS1002, as monotherapy, and in combination with CS1003, had a manageable safety profile across a broad dosing range. Promising antitumor activities were observed in patients with immune oncology (IO)-naive and IO-refractory tumors across CS1002 dose levels when combined with CS1003, supporting further evaluation of this treatment combination for solid tumors. PLAIN LANGUAGE SUMMARY: CS1002 is a human immunoglobulin (Ig) G1 monoclonal antibody that blocks the interaction of CTLA-4 with its ligands and increases T-cell activation/proliferation. CS1003, now named nofazinlimab, is a humanized, recombinant IgG4 monoclonal antibody that blocks the interaction between human PD-1 and its ligands. In this original article, we determined the safety profile of CS1002 as monotherapy and in combination with CS1003. Furthermore, we explored the antitumor activity of the combination in anti-programmed cell death protein (ligand)-1 (PD-[L]1)-naive microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) pan tumors, and anti-PD-(L)1-refractory melanoma and hepatocellular carcinoma (HCC). CS1002 in combination with CS1003 had manageable safety profile across a broad dosing range and showed promising antitumor activities across CS1002 dose levels when combined with CS1003. This supports further assessment of CS1002 in combination with CS1003 for the treatment of solid tumors.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno CTLA-4 , Inibidores de Checkpoint Imunológico , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Idoso , Adulto , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Dose Máxima Tolerável , Idoso de 80 Anos ou mais , Relação Dose-Resposta a Droga , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
8.
Mol Ther ; 31(2): 535-551, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36068918

RESUMO

Immune checkpoint blockade can induce potent and durable responses in patients with highly immunogenic mismatch repair-deficient tumors; however, these drugs are ineffective against immune-cold neuroblastoma tumors. To establish a role for a T cell-based therapy against neuroblastoma, we show that T cell and memory T cell-dependent gene expression are associated with improved survival in high-risk neuroblastoma patients. To stimulate anti-tumor immunity and reproduce this immune phenotype in neuroblastoma tumors, we used CRISPR-Cas9 to knockout MLH1-a crucial molecule in the DNA mismatch repair pathway-to induce mismatch repair deficiency in a poorly immunogenic murine neuroblastoma model. Induced mismatch repair deficiency increased the expression of proinflammatory genes and stimulated T cell infiltration into neuroblastoma tumors. In contrast to adult cancers with induced mismatch repair deficiency, neuroblastoma tumors remained unresponsive to anti-PD1 treatment. However, anti-CTLA4 therapy was highly effective against these tumors. Anti-CTLA4 therapy promoted immune memory and T cell epitope spreading in cured animals. Mechanistically, the effect of anti-CTLA4 therapy against neuroblastoma tumors with induced mismatch repair deficiency is CD4+ T cell dependent, as depletion of these cells abolished the effect. Therefore, a therapeutic strategy involving mismatch repair deficiency-based T cell infiltration of neuroblastoma tumors combined with anti-CTLA4 can serve as a novel T cell-based treatment strategy for neuroblastoma.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Neuroblastoma , Camundongos , Animais , Memória Imunológica , Neoplasias Colorretais/patologia , Neuroblastoma/genética , Neuroblastoma/terapia
9.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612803

RESUMO

Immuno-oncology has gained momentum with the approval of antibodies with clinical activities in different indications. Unfortunately, for anti-PD (L)1 agents in monotherapy, only half of the treated population achieves a clinical response. For other agents, such as anti-CTLA4 antibodies, no biomarkers exist, and tolerability can limit administration. In this study, using publicly available genomic datasets, we evaluated the expression of the macrophage scavenger receptor-A (SR-A) (MSR1) and its association with a response to check-point inhibitors (CPI). MSR1 was associated with the presence of macrophages, dendritic cells (DCs) and neutrophils in most of the studied indications. The presence of MSR1 was associated with macrophages with a pro-tumoral phenotype and correlated with TIM3 expression. MSR1 predicted favorable overall survival in patients treated with anti-PD1 (HR: 0.56, FDR: 1%, p = 2.6 × 10-5), anti PD-L1 (HR: 0.66, FDR: 20%, p = 0.00098) and anti-CTLA4 (HR: 0.37, FDR: 1%, p = 4.8 × 10-5). When specifically studying skin cutaneous melanoma (SKCM), we observed similar effects for anti-PD1 (HR: 0.65, FDR: 50%, p = 0.0072) and anti-CTLA4 (HR: 0.35, FDR: 1%, p = 4.1 × 10-5). In a different dataset of SKCM patients, the expression of MSR1 predicted a clinical response to anti-CTLA4 (AUC: 0.61, p = 2.9 × 10-2). Here, we describe the expression of MSR1 in some solid tumors and its association with innate cells and M2 phenotype macrophages. Of note, the presence of MSR1 predicted a response to CPI and, particularly, anti-CTLA4 therapies in different cohorts of patients. Future studies should prospectively explore the association of MSR1 expression and the response to anti-CTLA4 strategies in solid tumors.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Perfilação da Expressão Gênica , Transcriptoma , Oncologia , Receptores Depuradores Classe A
10.
Actas Dermosifiliogr ; 115(1): T48-T55, 2024 Jan.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37923078

RESUMO

Systemic treatment with immunotherapy or targeted therapy can significantly improve survival in patients with advanced (metastatic or high-risk) melanoma. Fifty percent of patients with melanoma have a BRAF mutation. Decisions on optimal sequencing of systemic treatments should take into account drug- and tumor-related factors and patient characteristics. Although the combination of ipilimumab and nivolumab is associated with the best survival outcomes, it is associated with significant toxicity. Targeted therapy may be a more favorable option in certain clinical situations. We review the literature on immunotherapy and targeted therapy in melanoma and present an algorithm for guiding decision-making on their use as first-line systemic treatments for advanced BRAF-mutated melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Nivolumabe/uso terapêutico , Nivolumabe/genética , Imunoterapia , Mutação , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Terapia de Alvo Molecular
11.
Actas Dermosifiliogr ; 115(1): 48-55, 2024 Jan.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37321549

RESUMO

Systemic treatment with immunotherapy or targeted therapy can significantly improve survival in patients with advanced (metastatic or high-risk) melanoma. Fifty percent of patients with melanoma have a BRAF mutation. Decisions on optimal sequencing of systemic treatments should take into account drug- and tumor-related factors and patient characteristics. Although the combination of ipilimumab and nivolumab is associated with the best survival outcomes, it is associated with significant toxicity. Targeted therapy may be a more favorable option in certain clinical situations. We review the literature on immunotherapy and targeted therapy in melanoma and present an algorithm for guiding decision-making on their use as first-line systemic treatments for advanced BRAF-mutated melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Nivolumabe/uso terapêutico , Nivolumabe/genética , Imunoterapia , Mutação , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico
12.
Ann Oncol ; 34(9): 796-805, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414216

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the management of advanced melanoma (AM). However, data on ICI effectiveness have largely been restricted to clinical trials, thereby excluding patients with co-existing malignancies. Chronic lymphocytic leukemia (CLL) is the most prevalent adult leukemia and is associated with increased risk of melanoma. CLL alters systemic immunity and can induce T-cell exhaustion, which may limit the efficacy of ICIs in patients with CLL. We, therefore, sought to examine the efficacy of ICI in patients with these co-occurring diagnoses. PATIENTS AND METHODS: In this international multicenter study, a retrospective review of clinical databases identified patients with concomitant diagnoses of CLL and AM treated with ICI (US-MD Anderson Cancer Center, N = 24; US-Mayo Clinic, N = 15; AUS, N = 19). Objective response rates (ORRs), assessed by RECIST v1.1, and survival outcomes [overall survival (OS) and progression-free survival (PFS)] among patients with CLL and AM were assessed. Clinical factors associated with improved ORR and survival were explored. Additionally, ORR and survival outcomes were compared between the Australian CLL/AM cohort and a control cohort of 148 Australian patients with AM alone. RESULTS: Between 1997 and 2020, 58 patients with concomitant CLL and AM were treated with ICI. ORRs were comparable between AUS-CLL/AM and AM control cohorts (53% versus 48%, P = 0.81). PFS and OS from ICI initiation were also comparable between cohorts. Among CLL/AM patients, a majority were untreated for their CLL (64%) at the time of ICI. Patients with prior history of chemoimmunotherapy treatment for CLL (19%) had significantly reduced ORRs, PFS, and OS. CONCLUSIONS: Our case series of patients with concomitant CLL and melanoma demonstrate frequent, durable clinical responses to ICI. However, those with prior chemoimmunotherapy treatment for CLL had significantly worse outcomes. We found that CLL disease course is largely unchanged by treatment with ICI.


Assuntos
Leucemia Linfocítica Crônica de Células B , Melanoma , Adulto , Humanos , Leucemia Linfocítica Crônica de Células B/complicações , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Austrália , Melanoma/patologia , Intervalo Livre de Progressão , Estudos Retrospectivos
13.
Cancer Immunol Immunother ; 72(7): 2459-2471, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37016127

RESUMO

BACKGROUND: The in-situ vaccine using CpG oligodeoxynucleotide combined with OX40 agonist antibody (CpG + OX40) has been shown to be an effective therapy activating an anti-tumor T cell response in certain settings. The roles of tumor volume, tumor model, and the addition of checkpoint blockade in the efficacy of CpG + OX40 in-situ vaccination remains unknown. METHODS: Mice bearing flank tumors (B78 melanoma or A20 lymphoma) were treated with combinations of CpG, OX40, and anti-CTLA-4. Tumor growth and survival were monitored. In vivo T cell depletion, tumor cell phenotype, and tumor infiltrating lymphocyte (TIL) studies were performed. Tumor cell sensitivity to CpG and macrophages were evaluated in vitro. RESULTS: As tumor volumes increased in the B78 (one-tumor) and A20 (one-tumor or two-tumor) models, the anti-tumor efficacy of the in-situ vaccine decreased. In vitro, CpG had a direct effect on A20 proliferation and phenotype and an indirect effect on B78 proliferation via macrophage activation. As A20 tumors progressed in vivo, tumor cell phenotype changed, and T cells became more involved in the local CpG + OX40 mediated anti-tumor response. In mice with larger tumors that were poorly responsive to CpG + OX40, the addition of anti-CTLA-4 enhanced the anti-tumor efficacy in the A20 but not B78 models. CONCLUSIONS: Increased tumor volume negatively impacts the anti-tumor capability of CpG + OX40 in-situ vaccine. The addition of checkpoint blockade augmented the efficacy of CpG + OX40 in the A20 but not B78 model. These results highlight the importance of considering multiple preclinical model conditions when assessing the efficacy of cancer immunotherapy regimens and their translation to clinical testing.


Assuntos
Linfoma , Melanoma , Vacinas , Camundongos , Animais , Linfócitos T , Melanoma/genética , Macrófagos , Receptores OX40 , Imunoterapia/métodos
14.
Cancer Immunol Immunother ; 72(11): 3543-3558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37550428

RESUMO

Combined immune checkpoint blockade (ICB) is effective therapy for renal cell carcinoma (RCC). However, the dynamic changes in circulating B cells induced by combined ICB have not been clarified. The present study prospectively examined 22 patients scheduled to receive ICB for unresectable or metastatic RCC between March 2018 and August 2021. Eleven patients received combined therapy with anti-PD-1 (nivolumab) and anti-CTLA-4 (ipilimumab), and the other 11 patients received nivolumab monotherapy. Comprehensive phenotypes of circulating immune cells obtained prior to and after ICB therapy were analyzed by flow cytometry. Although the proportion of naïve B cells among total B cells was significantly decreased, that of switched memory B cells was significantly increased after combined therapy. In responders, the proportion of B cells among peripheral blood mononuclear cells was significantly higher prior to ICB therapy, and the proportion of switched memory B cells among total B cells tended to increase after ICB therapy. Of note, the proportion of plasmablasts among total B cells was significantly increased after ICB therapy in patients who developed severe immune-related adverse events (irAEs), and the proportion of B cells among peripheral blood decreased significantly. Furthermore, in four of five patients who developed immune-related hypophysitis following combined therapy, anti-pituitary antibody was detected in the serum. These results suggested that immune-related hypophysitis was closely related to the increase in circulating plasmablasts. Collectively, this study suggests that combined ICB promotes the differentiation of B cell populations, which is associated with efficient tumor suppression and development of irAEs.


Assuntos
Carcinoma de Células Renais , Hipofisite , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Nivolumabe/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Leucócitos Mononucleares , Neoplasias Renais/patologia , Diferenciação Celular
15.
J Transl Med ; 21(1): 508, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507765

RESUMO

Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.


Assuntos
Melanoma , Humanos , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia , Antígeno CTLA-4 , Itália
16.
Pharmacology ; 108(1): 37-46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36463853

RESUMO

BACKGROUND: Metastatic esophageal carcinoma (EC) has a poor prognosis and only limited treatment options. While immune checkpoint inhibitors (ICIs) have improved the treatment of a broad spectrum of cancers, patients with EC mostly fail to respond to this treatment. For that reason, it is crucial to understand the immune phenotype of each cancer patient and moreover, to understand how different therapies modulate the cancer microenvironment and sensitize the tumors to the treatment with ICIs. SUMMARY: We have conducted a systematic review of the literature to evaluate the potential of ICI therapy in combination with chemotherapy, radiotherapy, and/or biologic therapy in EC patients. In our review, we have discussed the effects of diverse treatment approaches on the tumor microenvironment of EC. In addition, we have reviewed the current phase II and III clinical trials in EC patients to provide a rationale for immunotherapy application in combination settings with chemotherapy, radiotherapy, and/or biologic therapy. KEY MESSAGES: A great effort is already underway in clinical trials evaluating the combinatorial administration of ICIs and other treatment modalities in metastatic EC patients. PD-L1 expression status was shown to be higher in the squamous cell carcinoma (SCC) as compared to adenocarcinoma. Thus, ICIs plus chemotherapy are being discussed as a particularly feasible option for patients with SCC. Radiation was shown to induce the expression of immune checkpoint molecules and to promote the priming and activation of cytotoxic T cells which provides a rationale for ICI administration in a combination with radiotherapy. The combination of ICIs with biologic therapy was shown to be safe; however, the impact on the clinical outcomes of EC patients varied among studies.


Assuntos
Carcinoma , Neoplasias Esofágicas , Humanos , Imunoterapia , Neoplasias Esofágicas/tratamento farmacológico , Microambiente Tumoral
17.
Drug Resist Updat ; 65: 100886, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370665

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the 3rd most common cancer worldwide. CircRNAs are promising novel biomarkers for CRC. T regulatory (Treg) cells express the immune checkpoint receptor of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and promote tumor immunological tolerance. We therefore investigate the biological functions and mechanisms of circQSOX1 in CRC tumorigenesis; involvement of circQSOX1 in promoting Treg cell-mediated CRC immune escape in anti-CTLA-4 therapy. METHODS: Bioinformatics analyses were performed for circQSOX1expressions, specific binding sites, and N6-methyladenosine (m6A) motifs of circQSOX1, thatwere further validated with a series of experiments. Functions of circQSOX1 in promoting CRC development, Treg cells-based immune escape, and anti-CTLA-4 therapy response were investigated both in vitro and in vivo. RESULTS: High circQSOX1 expression was associated with carcinogenesis and poor clinical outcome of CRC patients. METTL3-mediated RNA m6A modification on circQSOX1 could be read by IGF2BP2 in CRC cells. CircQSOX1 promoted CRC development by regulating miR-326/miR-330-5p/PGAM1 axis. CircQSOX1 regulated glycolysis and promoted immune escape of CRC cells, and inhibits anti-CTLA-4 therapy response in CRC patients. CONCLUSION: m6A-modified circQSOX1 facilitated CRC tumorigenesis by sponging miR-326 and miR-330-5p to promotes PGAM1 expression, which further promoted CRC immune escape by activating glycolysis and inactivating the anti-CTLA-4 therapy response of CRC. Combined treatment with sh-circQSOX1 and anti-CTLA-4 could be a strategy to overcome Treg cell-mediated CRC immune therapy resistance.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA Circular/genética , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Adenosina , Proliferação de Células , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
18.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139110

RESUMO

Immune checkpoint inhibitors (ICIs), including anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) antibodies, have initiated a new era in the treatment of malignant melanoma. ICIs can be used in various settings, including first-line, adjuvant, and neo-adjuvant therapy. In the scope of this review, we examined clinical studies utilizing ICIs in the context of treating oral mucosal melanoma, a rare disease, albeit with an extremely poor prognosis, with a specific focus on unraveling the intricate web of resistance mechanisms. The absence of a comprehensive review focusing on ICIs in oral mucosal melanoma is notable. Therefore, this review seeks to address this deficiency by offering a novel and thorough analysis of the current status, potential resistance mechanisms, and future prospects of applying ICIs specifically to oral malignant melanoma. Clarifying and thoroughly understanding these mechanisms will facilitate the advancement of effective therapeutic approaches and enhance the prospects for patients suffering from oral mucosal melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Terapia Combinada , Imunoterapia , Inibidores de Checkpoint Imunológico/uso terapêutico
19.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108792

RESUMO

The rubric of immune-related (ir) diabetes mellitus (DM) (irDM) encompasses various hyperglycemic disorders related to immune checkpoint inhibitors (ICPis). Beyond sharing similarities with conventional DM, irDM is a distinct, yet important, entity. The present narrative review provides a comprehensive overview of the literature regarding irDM published in major databases from January 2018 until January 2023. Initially considered rare, irDM is increasingly being reported. To advance the knowledge of irDM, the present review suggests a concerted vision comprising two intertwined aspects: a scientific-centered and a patient-centered view. The scientific-centered aspect addresses the pathophysiology of irDM, integrating: (i) ICPi-induced pancreatic islet autoimmunity in genetically predisposed patients; (ii) altered gut microbiome; (iii) involvement of exocrine pancreas; (iv) immune-related acquired generalized lipodystrophy. The patient-centered aspect is both nurtured by and nurturing the four pillars of the scientific-centered aspect: awareness, diagnosis, treatment, and monitoring of irDM. The path forward is a multidisciplinary initiative towards: (i) improved characterization of the epidemiological, clinical, and immunological profile of irDM; (ii) standardization of reporting, management, and surveillance protocols for irDM leveraging global registries; (iii) patient stratification according to personalized risk for irDM; (iv) new treatments for irDM; and (v) uncoupling ICPi efficacy from immunotoxicity.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Pâncreas Exócrino , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos
20.
Cancer ; 128(5): 975-983, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724197

RESUMO

BACKGROUND: In response to the increased use of combination checkpoint inhibitors (CPIs) and the resulting increased cutaneous adverse events (CAEs), this study reviewed patients with melanoma treated with combination CPIs to characterize CAE features and their clinical impact, correlation to adverse events in other organs, and correlation to tumor response. METHODS: Patients from the authors' institutional database who received at least 1 dose of ipilimumab in combination with either nivolumab or pembrolizumab between January 1, 2012, and December 31, 2017, for stage IV or unresectable stage III melanoma were identified. The time to next treatment (TTNT) was calculated from the start of CPI therapy to the start of the next treatment or death, and the development of CAEs was tested in a time-dependent Cox regression to identify associations with TTNT. RESULTS: Eighty-one patients (52.3%) experienced a total of 92 CAEs, including eczematous dermatitis (25.0%), morbilliform eruption (22.8%), vitiligo (12.0%), and pruritus without rash (8.7%). The median times to the onset and resolution of CAEs were 21 days (range, 0-341 days) and 50 days (range, 1-352 days), respectively. Most CAEs resolved after patients entered the CPI maintenance phase and treatment with oral antihistamines with or without topical steroids. CPI discontinuation occurred in 4 patients (2.6%) because of CAEs, in 49 (31.6%) because of other immune-related adverse events, and in 20 (12.9%) because of melanoma progression or death. For patients definitively treated with CPIs (n = 134; 86.5%), TTNT was significantly longer with CAEs than without CAEs (hazard ratio, 0.567; 95% CI, 0.331-0.972; P = .039). CONCLUSIONS: CAEs were mostly reversible and rarely required therapy discontinuation. The development of CAEs was associated with a longer TTNT, and this suggested a possible clinical benefit.


Assuntos
Imunoterapia , Melanoma , Dermatopatias/induzido quimicamente , Neoplasias Cutâneas , Anticorpos Monoclonais Humanizados , Humanos , Imunoterapia/efeitos adversos , Incidência , Ipilimumab , Melanoma/patologia , Nivolumabe , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA