Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anim Cogn ; 27(1): 19, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429547

RESUMO

Prey species commonly assess predation risk based on acoustic signals, such as predator vocalizations or heterospecific alarm calls. The resulting risk-sensitive decision-making affects not only the behavior and life-history of individual prey, but also has far-reaching ecological consequences for population, community, and ecosystem dynamics. Although auditory risk recognition is ubiquitous in animals, it remains unclear how individuals gain the ability to recognize specific sounds as cues of a threat. Here, it has been shown that free-living birds (Wood Warblers Phylloscopus sibilatrix) can learn to recognize unfamiliar, complex sounds (samples of punk rock songs) as cues of a threat from conspecifics holding adjacent territories during the spring breeding season. In a playback experiment, Wood Warblers initially ignored the unfamiliar sounds, but after repeatedly hearing that these sounds trigger alarm calling reaction of neighbors, most individuals showed an anti-predator response to them. Moreover, once learned soon after nestlings hatching, the anti-predator response of parents toward previously unfamiliar sounds was then retained over the entire nestlings rearing period. These results demonstrate that social learning via the association of unfamiliar sounds with known alarm signals enables the spread of anti-predator behavior across territory borders and provides a mechanism explaining the widespread abilities of animals to assess predation risk based on acoustic cues.


Assuntos
Passeriformes , Aprendizado Social , Humanos , Animais , Ecossistema , Vocalização Animal/fisiologia , Aprendizagem , Passeriformes/fisiologia , Comportamento Predatório
2.
J Exp Biol ; 224(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34845497

RESUMO

For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical poison frog Allobates femoralis ( Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of the two, and compared their reaction to a water control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multi-modal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and probably need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in poison frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles.


Assuntos
Odonatos , Venenos , Animais , Sinais (Psicologia) , Larva/fisiologia , Comportamento Predatório , Ranidae/fisiologia
3.
Anim Cogn ; 24(3): 533-540, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33205320

RESUMO

Previous studies have found that Carolina chickadees and tufted titmice use a predator's head orientation to determine risk, taking fewer seeds from a feeder if an avian predator model's head is facing the feeder while ignoring the head orientation. In addition to head orientation, eyes are a cue of predator risk. In the current study, I examined whether or not chickadees and titmice used the presence of eyes of a predator model to determine when to forage for food. Plastic owl models, with their eyes covered or uncovered, were presented to wild flocks of chickadees and titmice. To test whether or not chickadees and titmice would respond to the presence of eyes, the number of seeds taken and the calling behavior of birds were compared between the two types of predator presentations (eyes covered or uncovered). Chickadees and titmice took fewer seeds when the eyes were uncovered than when they were covered. Chickadees also gave significantly more introductory notes, often used in association with the presence of predators or risk, in their calls when the eyes were visible than when the eyes of the predator model were covered. The results indicate that chickadees and titmice can use the presence of eyes on predators to determine predation risk and possibly use eye gaze to determine where a predator is looking.


Assuntos
Passeriformes , Aves Canoras , Animais , Orientação Espacial , Comportamento Predatório , Medição de Risco
4.
BMC Ecol ; 20(1): 41, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680498

RESUMO

BACKGROUND: The ability of a prey species to assess the risk that a predator poses can have important fitness advantages for the prey species. To better understand predator-prey interactions, more species need to be observed to determine how prey behavioral responses differ in intensity when approached by different types of predators. The plateau pika (Ochotona curzoniae) is preyed upon by all predators occurring in its distribution area. Therefore, it is an ideal species to study anti-predator behavior. In this study, we investigated the intensity of anti-predator behavior of pikas in response to visual cues by using four predator species models in Maqu County on the eastern Qinghai-Tibetan Plateau. RESULTS: The behavioral response metrics, such as Flight Initiation Distance (FID), the hiding time and the percentage of vigilance were significantly different when exposed to a Tibetan fox, a wolf, a Saker falcon and a large-billed crow, respectively. Pikas showed a stronger response to Saker falcons compared to any of the other predators. CONCLUSIONS: Our results showed that pikas alter their behavioral (such as FID, the hiding time and the vigilance) response intensity to optimally balance the benefits when exposed to different taxidermy predator species models. We conclude that pikas are able to assess their actual risk of predation and show a threat-sensitive behavioral response.


Assuntos
Lagomorpha , Animais , Medição de Risco
5.
Oecologia ; 191(4): 945-956, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686229

RESUMO

Predicting the effects of predator diversity loss on food webs is challenging, because predators can both consume and induce behavioral responses in their prey (i.e., non-consumptive effects or NCEs). Studies manipulating predator diversity and investigating NCEs are rare, especially in marine systems. Recently, a severe outbreak of sea star wasting syndrome (SSWS) on the west coast of North America resulted in unprecedented declines of the sea star Pisaster ochraceus. We investigated the consequences of Pisaster loss on an abundant grazer, the black turban snail Tegula funebralis, through NCEs. We combined a laboratory experiment and field surveys to examine the importance of identity vs. diversity in a predator assemblage (Pisaster, crabs, and octopuses) on Tegula behavior, feeding, and growth. Laboratory and field results indicated that predator identity, not diversity, drives Tegula behavior and causes NCEs. Mesocosm treatments with Pisaster caused greater NCEs on Tegula than assemblages without Pisaster. Tegula's distribution in the field, which is driven primarily by anti-predator behavior, was strongly associated only with Pisaster abundance, and not with the abundance of crabs, octopuses, and other predatory sea stars (Leptasterias spp.). We conclude that Pisaster primarily drives Tegula vertical distribution and may be having strong NCEs on Tegula on northern California rocky shores. Furthermore, predator diversity in northern California does not provide functional redundancy, in terms of NCEs on Tegula, to buffer the system from Pisaster loss. Thus, predator-induced vertical distributions and grazing suppression may not be maintained in areas where Pisaster populations are reduced or slow to recover from SSWS.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , California , Caramujos , Estrelas-do-Mar
6.
Ecotoxicol Environ Saf ; 179: 272-281, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31059994

RESUMO

The majority of ecotoxicological studies performed measure average responses from individuals which do not account for the inter-individual variation in the responses of animals to environmental stimuli (i.e. the personality of individuals). Thus, these designs assume that all individuals will respond to contaminant exposure in a similar manner. Additionally, commonly used constant, static exposure regime designs neglect to recognize the spatial and temporal variation in contaminant plume structures as they move throughout fluid environments. The purpose of this study was to understand the effects of the structural characteristics (concentration, duration, and frequency) of temporally and spatially variant contaminant plumes on the personality of individuals. This experimental design aimed to construct a sensitive definition of exposure by connecting sublethal effects of toxicants and realistic exposure regimes. This study used escape response of Faxonius virilis crayfish from the predatory odor of Micropterus salmoides prior to and following exposure to the herbicide, atrazine. Atrazine was delivered in pulses to flow through exposure arenas for a total of 47 h while manipulating the concentration, frequency, and duration of the herbicide pulses. Escape response of crayfish prior to exposure was used to categorize animals into bold and shy personalities. The change in escape response was analyzed and resulted in a personality-dependent behavioral sensitivity to the polluted environment. Individuals classified as bold showed increased change in response to predatory odor relative to shy animals. Bold animals exhibited decreased activity after exposure where no change was presented in shy individuals. Shifts in individual behavior have impacts on the population level (e.g. resource acquisition/value; interspecies competition) and the ecosystem level (e.g. food web dynamics; trophic cascades). This study demonstrates the importance of sensitive measures in ecological risk assessment methods.


Assuntos
Astacoidea/efeitos dos fármacos , Atrazina/toxicidade , Reação de Fuga/efeitos dos fármacos , Herbicidas/toxicidade , Personalidade/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Astacoidea/fisiologia , Bass/fisiologia , Ecossistema , Comportamento Alimentar/efeitos dos fármacos , Cadeia Alimentar , Odorantes/análise , Olfato/efeitos dos fármacos
7.
Ecology ; 99(1): 127-135, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29030965

RESUMO

Fear itself (perceived predation risk) can affect wildlife demography, but the cumulative impact of fear on population dynamics is not well understood. Parental care is arguably what most distinguishes birds and mammals from other taxa, yet only one experiment on wildlife has tested fear effects on parental food provisioning and the repercussions this has for the survival of dependent offspring, and only during early-stage care. We tested the effect of fear on late-stage parental care of mobile dependent offspring, by locating radio-tagged Song Sparrow fledglings and broadcasting predator or non-predator playbacks in their vicinity, measuring their parent's behavior and their own, and tracking the offspring's survival to independence. Fear significantly reduced late-stage parental care, and parental fearfulness (as indexed by their reduction in provisioning when hearing predators) significantly predicted their offspring's condition and survival. Combining results from this experiment with that on early-stage care, we project that fear itself is powerful enough to reduce late-stage survival by 24%, and cumulatively reduce the number of young reaching independence by more than half, 53%. Experiments in invertebrate and aquatic systems demonstrate that fear is commonly as important as direct killing in affecting prey demography, and we suggest focusing more on fear effects and on offspring survival will reveal the same for wildlife.


Assuntos
Medo , Comportamento Predatório , Animais , Demografia , Pais , Dinâmica Populacional
8.
J Chem Ecol ; 44(2): 178-188, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29336000

RESUMO

In aquatic environments, chemical cues are believed to be associated with prey response to predation risk, yet few basic cue compositions are known despite the pronounced ecological and evolutionary significance of such cues. Previous work indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in amphibian tadpoles. However, work described here confirms that this specific ion species m/z 501.2886 is produced by injured tadpoles, exhibits increased spectral intensity with higher tadpole biomass, and is not produced by starved predators. These results indicate the anion is an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]-, m/z 501.2886, of C26H45O7S- which could not be determined in previous studies using low resolution instruments. Collision induced dissociation of m/z 501 ions formed product ions of m/z 97 and m/z 80, HSO4- and SO3-, respectively, showing the presence of sulfate. Green frog tadpoles, Lithobates clamitans, exposed to the m/z 501 anion or sodium dodecyl sulfate exhibited similar anti-predator responses, suggesting organic sulfate is a tadpole behavior modifier.


Assuntos
Ânions/metabolismo , Comportamento Predatório , Ranidae/fisiologia , Animais , Ânions/análise , Larva/fisiologia , Espectrometria de Massas , Sulfatos/análise , Sulfatos/metabolismo
9.
Exp Appl Acarol ; 69(1): 35-47, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923463

RESUMO

Predation risk is a strong selective force shaping prey morphology, physiology, life history and/or behavior. As a prime stressor, predation risk may even induce trans-generational alterations, called maternal effects. Accordingly, maternal predation risk during offspring production may influence offspring life history and anti-predator behavior. Here, we assessed whether different levels of predation risk, posed by the predatory mite Phytoseiulus persimilis, induce graded maternal effects in its prey, the herbivorous two-spotted spider mite Tetranychus urticae. First, we generated four types of predation risk-stressed spider mite mothers by exposing them to living predators, direct and indirect predator cue combinations or no predator cues, respectively. Then, we investigated the life history (offspring developmental time, sex) and anti-predator response (activity, position on the leaf) of their offspring on leaves with and without direct and indirect predator cues. Maternal stress, no matter of the predation risk level, prolonged the offspring developmental time, as compared to offspring from unstressed mothers. This pattern was more pronounced on leaves with than without predator cues. Offspring from stressed mothers resided more likely on the leaf blade than close to the leaf vein. Offspring sex ratio and activity were not influenced by maternal predation risk but activity was higher on leaves with than without predator cues. We argue that the prolonged developmental time is non-adaptive, yet the changed site preference is adaptive because reducing the encounter likelihood with predators. Our study represents a key example for predation risk-mediated maternal effects on developmental trajectories of offspring.


Assuntos
Cadeia Alimentar , Tetranychidae/fisiologia , Animais , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Herança Materna , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Comportamento Predatório , Tetranychidae/genética , Tetranychidae/crescimento & desenvolvimento
10.
Am J Primatol ; 77(3): 296-308, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25296898

RESUMO

Kloss gibbons (Hylobates klossii) are endemic to the Mentawai Islands in Indonesia and have been subject to human predation for more than 2000 years in the absence of any other significant predators. We investigate the behavior of Kloss gibbons that may be attributed to avoiding human predation. We observed Kloss gibbons in the Peleonan forest in the north of Siberut Island, the northernmost of the Mentawai island chain, over 18 months in 2007 and 2008, and collected data on their singing behavior, the number of individuals present during different conditions and their responses to humans. We examine behaviors that may reduce the risk of predation by humans during singing (the most conspicuous gibbon behavior), daily non-singing activities and encounters with humans. The individual risk of being stalked by hunters is reduced by singing in same-sex choruses and the risk of successful capture by hunters during singing is reduced by singing less often during daylight hours and by leaving the location of male pre-dawn singing before full light (reducing the visual signal to hunters). Groups in the Peleonan also fission during non-singing daily activity and rarely engage in play or grooming, enhancing the crypticity of their monochromatic black pelage in the canopy. We also observed a coordinated response to the presence of humans, wherein one adult individual acted as a "decoy" by approaching and distracting human observers, while other group members fled silently in multiple directions. "Decoy" behavior occurred on 31% of 96 encounters with unhabituated Kloss gibbons that detected our presence. "Decoy" individuals may put themselves at risk to increase the survival of related immatures (and adult females with infants) who have a greater risk of predation. We argue that, in combination, these behaviors are an evolved response to a long history of predation by humans.


Assuntos
Comportamento Animal/fisiologia , Hylobates/fisiologia , Comportamento Predatório , Vocalização Animal , Animais , Feminino , Florestas , Humanos , Indonésia , Masculino , Comportamento Social
11.
Horm Behav ; 66(5): 759-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218254

RESUMO

Adrenal hormones likely affect anti-predator behavior in animals. With experimental field studies, we first investigated associations between mean fecal glucocorticoid metabolite (fGC) excretion and vigilance and with behavioral responses to alarm call playbacks in free-ranging meerkats (Suricata suricatta). We then tested how vigilance and behavioral responses to alarm call playbacks were affected in individuals administered exogenous cortisol. We found a positive association between mean fGC concentrations and vigilance behavior, but no relationship with the intensity of behavioral responses to alarm calls. However, in response to alarm call playbacks, individuals administered cortisol took slightly longer to resume foraging than control individuals treated with saline solution. Vigilance behavior, which occurs in the presence and absence of dangerous stimuli, serves to detect and avoid potential dangers, whereas responses to alarm calls serve to avoid immediate predation. Our data show that mean fGC excretion in meerkats was associated with vigilance, as a re-occurring anti-predator behavior over long time periods, and experimentally induced elevations of plasma cortisol affected the response to immediate threats. Together, our results indicate an association between the two types of anti-predator behavior and glucocorticoids, but that the underlying mechanisms may differ. Our study emphasizes the need to consider appropriate measures of adrenal activity specific to different contexts when assessing links between stress physiology and different anti-predator behaviors.


Assuntos
Adaptação Psicológica/fisiologia , Reação de Fuga/fisiologia , Fezes/química , Glucocorticoides/análise , Herpestidae/fisiologia , Hidrocortisona/análise , Comportamento Predatório , Animais , Comportamento Animal/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Glucocorticoides/metabolismo , Herpestidae/metabolismo , Hidrocortisona/metabolismo , Masculino , Vocalização Animal/fisiologia
12.
Am J Primatol ; 76(2): 135-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24395649

RESUMO

The primary predators of primates are all ambush hunters, and yet felids, raptors, and snakes differ in aspects of their ecology that affect the evasive strategies of their primate prey. Felids and raptors can traverse long distances quickly, thus the urgency of threat they present increases as they come closer in proximity to primates. In contrast, snakes do not move rapidly over long distances, and so primates may be reasonably safe even at close distances provided snakes can be detected and monitored. We investigated the ability of captive rhesus macaques (Macaca mulatta) to detect snakes at distances ranging from 15 to 1.5 m. We also examined variation in intensity of perceived threat by applying a Hidden Markov Model to infer changes in underlying state from observable behaviors, that is, increased attention and mobbing. We found that the macaques often failed to detect snake models but that closer proximity improved snake detection, which is necessary before threat can be perceived. We also found that having only one individual in fairly close proximity (≤ 7.5 m) was sufficient to alert the rest of the group and so the chances of detection did not increase with increasing group size. Finally, we found that when the snakes were perceived, they did not elicit greater intensity of response with closer proximity. These results provide evidence that the threat from snakes is greatest when they are in proximity to primates but are unseen. When snakes are seen, however, distance appears not to affect primates' perceived risk, in contrast to their perceived risk from raptors and felids.


Assuntos
Comportamento Animal , Macaca mulatta/fisiologia , Percepção , Comportamento Predatório , Serpentes , Animais , Nível de Alerta/fisiologia , Masculino , Vocalização Animal
13.
Behav Processes ; 218: 105043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692462

RESUMO

Acoustic communication plays a vital role in predator-prey interactions. Although habitat structure has been shown to affect anti-predator tactics, little is known about how animals vary their behaviors in response to predator calls or heterospecific alarm calls in different environments. Here we used sound playbacks to test the responses of Eurasian tree sparrows (Passer montanus) foraging in harvested/unharvested rice paddy and open residential area. In the first experiment, we tested their behavioral responses to dove calls, male common cuckoo (Cuculus canorus) calls, hawk-like calls mimicked by female common cuckoo, sparrowhawk (Accipiter nisus) calls, and human yell calls produced to scare birds (predator signal playbacks). In the second experiment, we tested their behavioral responses to the Japanese tit's (Parus minor) territorial songs and alarm calls (heterospecific alarm signal playbacks). Results showed that the tree sparrows had less fleeing in unharvested ripe rice paddy than in harvested rice paddy and open residential area. In predator signal playbacks, call type affected the escape behavior of sparrows in unharvested rice paddy and open residential area but not harvested rice paddy. In alarm signal playbacks, tit alarm calls evoked more fleeing than territorial songs in harvested rice paddy and open residential area but not unharvested rice paddy. These results suggest that anthropogenic habitat changes may influence avian anti-predator tactics.


Assuntos
Ecossistema , Comportamento Predatório , Pardais , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Pardais/fisiologia , Comportamento Predatório/fisiologia , Masculino , Feminino , Comportamento Animal/fisiologia , Territorialidade
14.
Mov Ecol ; 12(1): 66, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313823

RESUMO

BACKGROUND: In prey, patterns of individual habitat selection and movement can be a consequence of an individuals' anti-predator behavior. Adjustments of anti-predator behavior are important for prey to increase their survival. Hunters may alter the anti-predator behavior of prey. In long-lived animals, experience may cause behavioral changes during individuals' lifetime, which may result in altered habitat selection and movement. Our knowledge of which specific events related to hunting activity induce behavioral changes in solitary living species is still limited. METHODS: We used offspring loss in a solitary and long-lived ungulate species, moose (Alces alces), as our model system. We investigated whether offspring loss to hunters induces behavioral changes in a species subjected to heavy human harvest but free from natural predation. To test for behavioral change in relation to two proxies for experience (calf fate and age), we combined movement data from 51 adult female moose with data on their offspring survival and female age. We tested for adjustments in females' habitat selection and movement following calf harvest using Hidden Markov Models and integrated Step Selection Analysis to obtain behavioral state specific habitat selection coefficients. RESULTS: We found that females with a harvested calf modified habitat selection and movement during the following hunting season. Female moose selected for shorter distance to roads during the night, selected for shorter distance to forests and greater distance to human settlements following calf harvest than females who had not lost a calf. The survival of twins in a given hunting season was related to female age. Older females we more likely to have twins survive the hunting season. CONCLUSIONS: Our findings suggest that losing offspring to human harvest imposes behavioral changes in a long-lived ungulate species, leading to adjustments in females' habitat selection and movement behavior, which may lower the risk of encountering hunters. In our study, female moose that experienced calf loss selected for lower distance to forest and selected for greater distance to human settlements during periods of high hunting pressure compared to females without the experience of calf loss during the previous hunting season. We interpret this as potential learning effects.

15.
Ecol Evol ; 14(3): e11177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510538

RESUMO

The careful selection of ungulate calving sites to improve offspring survival is vital in the face of predation. In general, there is limited knowledge to which degree predator presence and prey's individual experience shape the selection of calving sites. Predator presence influences the spatiotemporal risk of encountering a predator, while individual experiences with previous predation events shape perceived mortality risks. We used a multi-year movement dataset of a long-lived female ungulate (moose, Alces alces, n = 79) and associated calf survival to test how predator presence (i.e., encounter risk) and females' individual experiences with previous calf mortality events affected their calving site selection and site fidelity. Using data from areas with and without Scandinavian brown bear (Ursus arctos) predation, we compared females' calving site selection using individual-based analyses. Our findings suggest two things. First, bear presence influences calving site selection in this solitary living ungulate. Females in areas with bears were selected for higher shrub and tree cover and showed lower site fidelity than in the bear-free area. Second, the individual experience of calf loss changes females' selection the following year. Females with lost calves had a lower site fidelity compared to females with surviving calves. Our findings suggest that increased vegetation cover may be important for reducing encounter risk in bear areas, possibly by improving calf concealment. Lower site fidelity might represent a strategy to make the placement of calving sites less predictable for predators. We suggest that bear presence shapes both habitat selection and calving site fidelity in a long-lived animal, whereas the effect of individual experience with previous calf loss varies. We encourage further research on the relevance of female experience on the success of expressed anti-predator strategies during calving periods.

16.
Insects ; 14(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36662001

RESUMO

Numerous studies have confirmed that the trade-off between anti-predator behavior and mating behavior occurs in certain insect species. This suggests that insects invest more in anti-predator behavior, and fewer resources or time can be used in mating behavior. However, few studies focus on tonic immobility, an important anti-predator behavior in nature, and different stages in mating behavior. Tonic immobility (TI) is considered to be an important anti-predator behavior. Herein, we investigated the relationship between TI and mating behavior in the sweetpotato weevil (SPW), Cylas formicarius. As the first step, we artificially selected SPWs for the longer duration of TI (L-strain) and the shorter duration of TI (S-strain). The effect of courtship and copulation on the duration of TI in two artificial selection strains was tested. Furthermore, we compared the frequency and duration of two mating behaviors in four kinds of pairs (LF×LM, LF×SM, SF×LM, and SF×SM: LM-L-strain male; SM-S-strain male; LF-L-strain female; SF-S-strain female). Finally, we tested insemination success in four kinds of pairs (male and female SPWs from the L-strain or the S-strain). The courtship and copulation significantly reduced the duration of TI. Pairs with males from the L-strain showed lower frequency and longer duration of courtship than pairs with males from the S-strain. Similarly, males from L-strain pairs showed a longer period of copulation than pairs with males from the S-strain. However, there is no significant difference in the frequency of copulation and the success of insemination. These results support that there was a significant trade-off between TI and courtship as well as copulation in the SPW.

17.
Math Biosci Eng ; 20(2): 1558-1579, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36899498

RESUMO

In this work, a fishery predator-prey model with anti-predator behavior is presented according to the anti-predator phenomenon in nature. On the basis of this model, a capture model guided by a discontinuous weighted fishing strategy is established. For the continuous model, it analyzes how anti-predator behavior affects system dynamics. On this basis, it discusses the complex dynamics (order-m periodic solution (m=1,2)) induced by a weighted fishing strategy. Besides, in order to find the capture strategy that maximizes the economic profit in the fishing process, this paper constructs an optimization problem based on the periodic solution of the system. Finally, all of the results of this study have been verified numerically in MATLAB simulation.

18.
Front Physiol ; 14: 1172865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427407

RESUMO

The presence of predators can cause major changes in animal behavior, but how this interacts with hormonal state and brain activity is poorly understood. We gave female house sparrows (Passer domesticus) in post-molt condition an estradiol (n = 17) or empty implant (n = 16) for 1 week. Four weeks after implant removal, a time when female sparrows show large differences in neuronal activity to conspecific vs. heterospecific song, we exposed birds to either 30 min of conspecific song or predator calls, and video recorded their behavior. Females were then euthanized, and we examined neuronal activity using the expression of the immediate early gene (IEG) ZENK to identify how the acoustic stimuli affected neuronal activation. We predicted that if female sparrows with estradiol implants reduce neuronal activity in response to predator calls as they do to neutral tones and non-predatory heterospecifics, they would show less fear behavior and a decreased ZENK response in brain regions involved in auditory (e.g., caudomedial mesopallium) and threat perception functions (e.g., medial ventral arcopallium) compared to controls. Conversely, we predicted that if females maintain auditory and/or brain sensitivity towards predator calls, then female sparrows exposed to estradiol would not show any differences in ZENK response regardless of playback type. We found that female sparrows were less active during predator playbacks independent of hormone treatment and spent more time feeding during conspecific playback if they had previously been exposed to estradiol. We observed no effect of hormone or sound treatment on ZENK response in any region of interest. Our results suggest that female songbirds maintain vigilance towards predators even when in breeding condition.

19.
Math Biosci Eng ; 20(2): 4219-4242, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899624

RESUMO

In this study, we investigate a stochastic predator-prey model with anti-predator behavior. We first analyze the noise-induced transition from a coexistence state to the prey-only equilibrium by using the stochastic sensitive function technique. The critical noise intensity for the occurrence of state switching is estimated by constructing confidence ellipses and confidence bands, respectively, for the coexistence the equilibrium and limit cycle. We then study how to suppress the noise-induced transition by using two different feedback control methods to stabilize the biomass at the attraction region of the coexistence equilibrium and the coexistence limit cycle, respectively. Our research indicates that compared with the prey population, the predators appear more vulnerable and prone to extinction in the presence of environmental noise, but it can be prevented by taking some appropriate feedback control strategies.


Assuntos
Modelos Biológicos , Comportamento Predatório , Animais , Dinâmica Populacional , Retroalimentação , Biomassa , Cadeia Alimentar , Ecossistema
20.
Curr Biol ; 33(21): 4689-4696.e4, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37802052

RESUMO

Lions have long been perceived as Africa's, if not the world's, most fearsome terrestrial predator,1,2,3,4,5,6,7,8,9 the "king of beasts". Wildlife's fear of humans may, however, be far more powerful and all-prevailing1,10 as recent global surveys show that humans kill prey at much higher rates than other predators,10,11,12 due partly to technologies such as hunting with dogs or guns.11,13,14,15 We comprehensively experimentally tested whether wildlife's fear of humans exceeds even that of lions, by quantifying fear responses1 in the majority of carnivore and ungulate species (n = 19) inhabiting South Africa`s Greater Kruger National Park (GKNP),9,15,16,17 using automated camera-speaker systems9,18 at waterholes during the dry season that broadcast playbacks of humans, lions, hunting sounds (dogs, gunshots) or non-predator controls (birds).9,19,20,21,22 Fear of humans significantly exceeded that of lions throughout the savanna mammal community. As a whole (n = 4,238 independent trials), wildlife were twice as likely to run (p < 0.001) and abandoned waterholes in 40% faster time (p < 0.001) in response to humans than to lions (or hunting sounds). Fully 95% of species ran more from humans than lions (significantly in giraffes, leopards, hyenas, zebras, kudu, warthog, and impala) or abandoned waterholes faster (significantly in rhinoceroses and elephants). Our results greatly strengthen the growing experimental evidence that wildlife worldwide fear the human "super predator" far more than other predators,1,19,20,21,22,23,24,25,26,27,28 and the very substantial fear of humans demonstrated can be expected to cause considerable ecological impacts,1,6,22,23,24,29,30,31,32,33,34,35 presenting challenges for tourism-dependent conservation,1,36,37 particularly in Africa,38,39 while providing new opportunities to protect some species.1,22,40.


Assuntos
Leões , Panthera , Humanos , Animais , Suínos , Cães , África do Sul , Leões/fisiologia , Pradaria , Comportamento Predatório/fisiologia , Animais Selvagens , Perissodáctilos , Equidae/fisiologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA