Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 203(5): 2605-2613, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33704544

RESUMO

Sheath blight of rice caused by Rhizoctonia solani is regarded as one of the most widely distributed diseases of rice, and is one of the major production constraints for rice in India and most rice-growing countries of Asia. Biological control of plant diseases using antagonistic bacteria is now considered as a promising alternative to the use of hazardous chemical fungicides or bactericides. Several bacterial endophytes have been reported to support growth and improve the health of the plants and therefore, may be important as biocontrol agents. In the present study, putative antifungal metabolites were extracted from rice foliage endophyte Lysinibacillus sphaericus KJ872548 by solvent extraction methods and purified using HPTLC techniques. Separated bands were subjected to assess the in vitro antagonistic activity toward rice sheath blight pathogen Rhizoctonia solani using a dual culture method. Partially purified active fraction B2 obtained from HPTLC analysis showed the highest percentage of inhibition (76.9%). GC MS and FTIR analyses of B2 revealed the compound as1, 2-Benzenedicarboxylic acid butyl 2-Ethylhexyl ester, a strong antifungal volatile organic compound. Light microscopic analysis of the fungal mycelium from the dual culture plate of both culture filtrate and 1, 2-Benzenedicarboxylic acid butyl 2-Ethylhexyl ester disclosed strong mycolytic activity as evident by mycelial distractions and shrinkage. This is the first report on antifungal production by endophytic Lysinibacillus sphaericus against R. solani, the rice sheath blight pathogen. The findings of this study biologically prospect the endophyte L. sphaericus as an inexpensive broad spectrum bioagent for eco-friendly, economic and sustainable agriculture.


Assuntos
Antifúngicos/farmacologia , Bacillaceae/química , Endófitos/química , Oryza/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/efeitos dos fármacos , Antibiose , Antifúngicos/isolamento & purificação , Bacillaceae/isolamento & purificação , Bacillaceae/fisiologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungicidas Industriais , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Rhizoctonia/crescimento & desenvolvimento
2.
J Appl Microbiol ; 131(1): 375-391, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33249672

RESUMO

AIMS: Compare and characterize Chaetomium strains with special regard to their potentialities as biocontrol agents. METHODS AND RESULTS: Twelve strains of the fungal genus Chaetomium from diverse ecological niches were identified as belonging to six different species. Large differences were observed between the strains with regard to temperature requirements for mycelial growth and pigmentation of culture filtrates. Culture filtrates and ethyl acetate extracts were assayed for fungicidal effects against important phytopathogens both on agar media and in multiwell plates. The samples from Chaetomium globosum were particularly active against Botrytis cinerea, Pyrenophora graminea and Bipolaris sorokiniana, while those from C. cochliodes and C. aureum were inhibitory towards Phytophthora infestans, and P. infestans and Fusarium culmorum respectively. To narrow down the active principle, the most promising extracts were separated by preparative HPLC and the resulting fractions tested in bioassays. Chaetoglobosins were identified as active compounds produced by C. globosum. CONCLUSIONS: The bioassays revealed C. aureum and C. cochliodes as promising candidates for use in biocontrol. Both showed remarkably good activity against the prominent plant pathogen P. infestans. SIGNIFICANCE AND IMPACT OF THE STUDY: We provide the first systematic study comparing six different Chaetomium species with regard to their use as biocontrol agents.


Assuntos
Antibiose , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Chaetomium/fisiologia , Fungos/crescimento & desenvolvimento , Antifúngicos/análise , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Agentes de Controle Biológico/análise , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Chaetomium/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Alcaloides Indólicos/análise , Alcaloides Indólicos/farmacologia , Fenótipo , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento
3.
Plant Biotechnol J ; 17(8): 1567-1581, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30672092

RESUMO

Sclerotinia sclerotiorum, a predominately necrotrophic fungal pathogen with a broad host range, causes a significant yield-limiting disease of soybean called Sclerotinia stem rot. Resistance mechanisms against this pathogen in soybean are poorly understood, thus hindering the commercial deployment of resistant varieties. We used a multiomic approach utilizing RNA-sequencing, gas chromatography-mass spectrometry-based metabolomics and chemical genomics in yeast to decipher the molecular mechanisms governing resistance to S. sclerotiorum in soybean. Transcripts and metabolites of two soybean recombinant inbred lines, one resistant and one susceptible to S. sclerotiorum were analysed in a time course experiment. The combined results show that resistance to S. sclerotiorum in soybean is associated in part with an early accumulation of JA-Ile ((+)-7-iso-jasmonoyl-L-isoleucine), a bioactive jasmonate, increased ability to scavenge reactive oxygen species, and importantly, a reprogramming of the phenylpropanoid pathway leading to increased antifungal activities. Indeed, we noted that phenylpropanoid pathway intermediates, such as 4-hydroxybenzoate, cinnamic acid, ferulic acid and caffeic acid, were highly accumulated in the resistant line. In vitro assays show that these metabolites and total stem extracts from the resistant line clearly affect S. sclerotiorum growth and development. Using chemical genomics in yeast, we further show that this antifungal activity targets ergosterol biosynthesis in the fungus, by disrupting enzymes involved in lipid and sterol biosynthesis. Overall, our results are consistent with a model where resistance to S. sclerotiorum in soybean coincides with an early recognition of the pathogen, leading to the modulation of the redox capacity of the host and the production of antifungal metabolites.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Ergosterol/biossíntese , Glycine max/genética , Glycine max/microbiologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Regulação para Cima
4.
Mol Biol Rep ; 46(3): 3451-3460, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012026

RESUMO

An isolate (CanS-34A) of Aspergillus from a healthy plant of oilseed rape (Brassica napus) was identified based on morphological characterization and multi-locus phylogeny using the sequences of internal transcribed spacer (ITS)-5.8S rDNA region, BenA (for ß-tubulin), CaM (for calmodulin) and RPB2 (for RNA polymerase II). The results showed that CanS-34A belongs to Aspergillus capensis Hirooka et al. The antifungal metabolites produced by CanS-34A in potato dextrose broth (PDB) were extracted with chloroform. Three antifungal metabolites were isolated and purified from the chloroform extract of the PDB cultural filtrates of CanS-34A, and chemically identified as methyl dichloroasterrate, penicillither and rosellichalasin. They all showed antifungal activity against the plant pathogenic fungi Botrytis cinerea, Monilinia fructicola, Sclerotinia sclerotiorum and Sclerotinia trifoliorum with the EC50 values ranging from 2.46 to 65.00 µg/mL. To our knowledge, this is the first report about production of penicillither by Aspergillus and about the antifungal activity of methyl dichloroasterrate, penicillither and rosellichalasin against the four plant pathogenic fungi.


Assuntos
Aspergillus/classificação , Aspergillus/metabolismo , Brassica napus/microbiologia , Antifúngicos/metabolismo , Ascomicetos/genética , Aspergillus/genética , Aspergillus/isolamento & purificação , Testes de Sensibilidade Microbiana , Filogenia
5.
Food Microbiol ; 47: 36-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25583336

RESUMO

The present study investigated the antifungal activity of Lactobacillus amylovorus DSM19280 as a starter culture for gluten-free quinoa sourdough bread under pilot-plant conditions to extend the microbial shelf life. Challenge tests against environmental moulds were conducted and a negative control with non-antifungal strain, L. amylovorus DSM20531(T), as well as a chemically acidified and a non-acidified control were included. Organic acid production, antifungal metabolites, carbohydrates changes during fermentation and bread quality were compared to wheat counterparts. The application of quinoa sourdough fermented with the antifungal L. amylovorus DSM19280 extended the mould free shelf life by 4 days compared to the non-acidified control. No significant difference in lactic acid production was found between the lactobacilli strains. HPLC-UV/DAD was used to quantify antifungal compounds. The concentration of 4-hydroxyphenyllactic acid, phloretic acid, 3-phenyllactic acid and hydroferulic acid were significantly higher (P < 0.01) in the quinoa sourdough fermented with the antifungal L. amylovorus DSM19280 when compared to the non-antifungal strain, thus indicating their contribution to the antifungal activity. Evaluation of bread characteristics such as specific volume or crumb hardness, revealed that the addition of L. amylovorus fermented sourdough also improved bread quality. In conclusion, the combination of quinoa flour fermented with the antifungal L. amylovorus DSM19280 serves a great potential biopreservative ingredient to produce gluten-free breads with an improved nutritional value, better bread quality and higher safety due to an extended shelf life, and therefore meeting consumer needs for good quality and preservatives-free food products.


Assuntos
Pão/microbiologia , Chenopodium quinoa , Conservantes de Alimentos , Fungos/crescimento & desenvolvimento , Lactobacillus/fisiologia , Antibiose , Antifúngicos/análise , Antifúngicos/metabolismo , Pão/análise , Ácidos Cumáricos/análise , Fermentação , Microbiologia de Alimentos , Glutens/análise , Lactatos/análise , Ácido Láctico , Lactobacillus/crescimento & desenvolvimento , Fenilpropionatos/análise , Triticum
6.
J Basic Microbiol ; 55(1): 45-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24554614

RESUMO

In this study, evidences for antagonism were established by production of antifungal metabolites from Streptomyces griseus H7602, which were active to inhibit mycelial growth of Phytophthora capsici in the in vitro assays. Mycelial growth and zoosporangia formation of P. capsici was strongly inhibited in the medium containing the cell free culture filtrate of S. griseus H7602. Antifungal metabolites from the cell free culture filtrate of S. griseus H7602 showed substantial antagonistic effects on P. capsici. In addition, a purified antifungal compound was separated from the antifungal metabolites of S. griseus H7602 and identified to be 1H-pyrrole-2-carboxylic acid (PCA) by spectra analyses. PCA showed strong antifungal activity and was evaluated for the first time for its antagonism against P. capsici under in vitro conditions. Minimum inhibitory concentration (MIC) value of PCA was low (4 µg ml(-1)), and the mycelial growth of P. capsici was almost inhibited at concentration of 64 µg ml(-1). This study suggests that the PCA may be useful as biofungicides against P. capsici, and the prominent antagonism of antifungal metabolites from S. griseus H7602 highlights it as a candidate for biocontrol of P. capsici.


Assuntos
Antibiose , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Phytophthora/efeitos dos fármacos , Phytophthora/crescimento & desenvolvimento , Prolina/análogos & derivados , Streptomyces griseus/metabolismo , Antifúngicos/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Prolina/isolamento & purificação , Prolina/metabolismo , Prolina/farmacologia , Microbiologia do Solo
7.
J Basic Microbiol ; 55(12): 1343-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26214840

RESUMO

An Indian indigenous, Loktak Lake soil isolate Streptomyces violascens MT7 was assessed for its biocontrol potential both in vitro and in vivo against toxigenic fruit-rotting fungi. Strain MT7 exhibited broad-spectrum antifungal activity against various pathogenic postharvest fungi of citrus and papaya. In shake-flask fermentation, antagonist S. violascens MT7 highly produced extracellular antifungal metabolites in early stationary growth phase in glucose-yeast extract-malt extract (M93) broth. Both extracellular culture fluid (ECF) and its n-butanol extract showed significant broad-spectrum fungal mycelial inhibition of several tested fruit-rotting fungi. Antifungal metabolite was found to be heat stable, nonpeptidic, and polyene type antibiotic. The lowest minimum inhibitory concentration (MIC) of n-butanol extract against Colletotrichum gloeosporioides MTCC 9664 and Aspergillus niger MTCC 281 was 0.0312 and 0.0625 mg/ml, respectively. Purification of n-butanol extract through silica gel chromatography resulted in partial purification of bioactive metabolite and the TLC autobiography revealed the presence of single antifungal metabolite with Rf value of 0.755. In vivo bioassays demonstrated the biocontrol potential of tested biocontrol agents on fruit-rotting fungi. Use of cell suspension of S. violascens MT7, extracellular metabolite(s), and n-butanol extract significantly (p < 0.05) reduced sour-rot development on Citrus reticulata Blanco (oranges) and soft-rot development on papaya fruits. Therefore, these results strongly suggest a high potential for application of S. violascens MT7 and its extracellular metabolites as an effective eco-friendly alternative to synthetic fungicides for controlling toxigenic citrus and papaya-rotting fungi.


Assuntos
Antifúngicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Carica/microbiologia , Citrus/microbiologia , Colletotrichum/efeitos dos fármacos , Streptomyces/fisiologia , 1-Butanol/química , Antibiose , Antifúngicos/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Frutas/microbiologia , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Microbiologia do Solo , Streptomyces/química , Streptomyces/metabolismo
8.
Chem Biodivers ; 11(1): 92-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24443429

RESUMO

This study was aimed at isolation and characterization of natural antifungal compounds for grain mold, a key parasitic fungal disease of sorghum. Pseudomonas fluorescens strain isolated from rhizosphere of groundnut crop was selected as a source. Its biocontrolling ability was assessed by testing some biochemical attributes such as phosphate-solubilization, and HCN, NH3 , indole-3-acetic acid, and siderophore production. The strain showed positive result for all except indole-3-acetic acid, revealing its suitability for a further study. The antibiotic-sensitivity pattern of the strain against 43 antibiotics was also established, which showed resistance to 15 antibiotics. The efficacy of P. fluorescens strain against grain mold was identified by dual culture technique. Hundred percent inhibition was found against Fusarium moniliforme, an important causative agent of this disease. The strain was fermented for secondary metabolites and extracted with AcOEt. Chromatographic separation of the extract yielded four known compounds, cyclo(L-Pro-L-Phe) (1), cyclo(trans-4-hydroxy-L-Pro-L-Leu) (2), cyclo(trans-4-hydroxy-L-Pro-L-Phe) (3), and cyclo(Gly-L-Pro) (4), which were characterized by spectral analysis and optical rotation. The crude extract, a mixture of 2 and 3, and isolated 1 were proved to be significantly effective against grain mold fungi. This is the first report on production of these cyclic dipeptides by P. fluorescens and their antagonistic properties.


Assuntos
Antifúngicos/farmacologia , Dipeptídeos/farmacologia , Fusarium/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Pseudomonas fluorescens/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Dipeptídeos/química , Dipeptídeos/isolamento & purificação , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Relação Estrutura-Atividade
9.
Braz J Microbiol ; 55(2): 1863-1882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421597

RESUMO

The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.


Assuntos
Actinobacteria , Glycine max , Metaboloma , Microbiologia do Solo , Actinobacteria/metabolismo , Actinobacteria/isolamento & purificação , Actinobacteria/classificação , Brasil , Glycine max/microbiologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Doenças das Plantas/microbiologia , Espectrometria de Massas em Tandem , Fungos/classificação , Fungos/metabolismo , Fungos/isolamento & purificação , Floresta Úmida
10.
Braz J Microbiol ; 55(1): 365-374, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040990

RESUMO

Candida albicans causes a variety of clinical manifestations through multiple virulence factors that act simultaneously to overcome the immune system and invade the host tissues. Owing to the limited number of antifungal agents available, new candidiasis therapeutic strategies are required. Previous studies have demonstrated that the metabolites produced by Streptococcus mutans lead to a decrease in the number of Candida cells. Here, for the first time, we evaluated whether the C. albicans cells that survived the pretreatment with S. mutans supernatant can modify their virulence factors and their capability to infect Galleria mellonella larvae. Streptococcus mutans supernatant (SM-S) was obtained by filtering the culture supernatant of this bacterium. Then, C. albicans cells were pretreated with SM-S for 24 h, and the surviving cells were evaluated using in vitro and in vivo assays. The C. albicans pretreated with SM-S showed a significant inhibition of hyphal growth, an altered adhesion pattern, and an impaired capability to form biofilms; however, its proteolytic activity was not affected. In the in vivo assays, C. albicans cells previously exposed to SM-S exhibited a reduced ability to infect G. mellonella and a higher amount of circulating hemocytes. Thus, SM-S could inhibit important virulence factors of C. albicans, which may contribute to the development of new candidiasis therapeutic strategies.


Assuntos
Candida albicans , Candidíase , Animais , Virulência , Streptococcus mutans/fisiologia , Candidíase/microbiologia , Fatores de Virulência , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA