Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circ Res ; 135(1): 174-197, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900852

RESUMO

GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and ß-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of ß-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Transdução de Sinais , Descoberta de Drogas , História do Século XXI , História do Século XX
2.
Br J Pharmacol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479842

RESUMO

More than 30 years after their discovery, arrestins are recognised multiprotein scaffolds that play essential roles in G protein-coupled receptor (GPCR) regulation and signalling. Originally named for their capacity to hinder GPCR coupling to G proteins and facilitate receptor desensitisation, arrestins have emerged as key hubs for a myriad of other functions, including receptor internalisation and scaffolding of signalling complexes. Recent structural studies have started to provide snapshots of the complexes formed by GPCRs and arrestins, supporting a wealth of biochemical data delineating the molecular determinants of such interactions. Furthermore, biophysical techniques have also provided key information with regards to the basal and active conformations of arrestins, and how these are affected upon GPCR activation. Here, we review the most recent advances on our understanding of GPCR-arrestin complexes, from structure to interactions of arrestins with the lipid bilayer and other proteins. We also present an updated view on the development of tools to study the conformational flexibility of arrestins, with the potential to provide experimental data to describe the dynamic models of arrestin activation.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119584, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714305

RESUMO

G protein-coupled receptors (GPCRs) are seven transmembrane receptors that respond to external stimuli and undergo conformational changes to activate G proteins and modulate cellular processes leading to biological outcomes. To prevent overstimulation and prolonged exposure to stimuli, GPCRs are regulated by internalization. While the canonical GPCR internalization mechanism in mammalian cells is arrestin-dependent, clathrin-mediated endocytosis, more diverse GPCR internalization mechanisms have been described over the years. However, there is a lack of consistent methods used in the literature making it complicated to determine a receptor's internalization pathway. Here, we utilized a highly efficient time-resolved Förster resonance energy transfer (TR-FRET) internalization assay to determine the internalization profile of nine distinct GPCRs representing the GPCR classes A, B and C and with different G protein coupling profiles. This technique, coupled with clustered regularly interspaced palindromic repeats (CRISPR) engineered knockout cells allows us to effectively study the involvement of heterotrimeric G proteins and non-visual arrestins. We found that all the nine receptors internalized upon agonist stimulation in a concentration-dependent manner and six receptors showed basal internalization. Yet, there is no correlation between the receptor class and primary G protein coupling to the arrestin and G protein dependence for GPCR internalization. Overall, this study presents a platform for studying internalization that is applicable to most GPCRs and may even be extended to other membrane proteins. This method can be easily applicable to other endocytic machinery of interest and ultimately will lend itself towards the construction of comprehensive receptor internalization profiles.


Assuntos
Arrestina , Arrestinas , Animais , Arrestinas/metabolismo , Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Mamíferos/metabolismo
4.
Front Immunol ; 15: 1406532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035006

RESUMO

Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.


Assuntos
Mutação , Doenças da Imunodeficiência Primária , Receptores CXCR4 , Transdução de Sinais , Verrugas , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Humanos , Doenças da Imunodeficiência Primária/genética , Verrugas/genética , Animais , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Trombocitopenia/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo
5.
J Endocrinol ; 260(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224333

RESUMO

Somatostatin receptors (SSTs) are widely expressed in pituitary tumors and neuroendocrine neoplasms (NENs) of different origins, i.e. the gastrointestinal tract and the thorax (lungs and thymus), thus representing a well-established target for medical treatment with SST ligands (SRLs). However, the response to SRLs is highly heterogeneous between tumors. Two main factors can contribute to this variability: (i) the differential SST expression among tumor types and (ii) the differential expression/modulation of the SST-related intracellular machinery. In this literature review, we provide an overview of available data on the variable expression of SSTs in pituitary tumors and NENs, together with the resulting clinical implications. Moreover, we aim to describe the complex intracellular machinery involved in SST signaling and trafficking. Particularly, we will focus on ß-arrestins and describe their role in receptor internalization and recycling, as well as the various functions of these scaffold molecules in tumor pathogenesis and progression. This review highlights the interplay between membrane receptors and intracellular machinery, together with its role in determining the clinical behavior of the tumor and the response to treatment in patients with pituitary tumors or NENs.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico
6.
Structure ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38889722

RESUMO

Arrestins interact with phosphorylated G protein-coupled receptors (GPCRs) and regulate the homologous desensitization and internalization of GPCRs. The gate loop in arrestins is a critical region for both stabilization of the basal state and interaction with phosphorylated receptors. We investigated the roles of specific residues in the gate loop (K292, K294, and H295) using ß-arrestin-1 and phosphorylated C-tail peptide of vasopressin receptor type 2 (V2Rpp) as a model system. We measured the binding affinity of V2Rpp and analyzed conformational dynamics of ß-arrestin-1. Our results suggest that K294 plays a critical role in the interaction with V2Rpp without influencing the overall conformation of the V2Rpp-bound state. The residues K292 and H295 contribute to the stability of the polar core in the basal state and form a specific conformation of the finger loop in the V2Rpp-bound state.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38567654

RESUMO

CONTEXT: Melanocortin-4 receptor (MC4R) plays an important role in body weight regulation. Pathogenic MC4R variants are the most common cause of monogenic obesity. OBJECTIVE: We have identified 17 MC4R variants in adult and pediatric patients with obesity. Here, we aimed to functionally characterize these variants by analyzing four different aspects of MC4R signaling. In addition, we aimed to analyze the effect of setmelanotide, a potent MC4R agonist, on these MC4R variants. MATERIALS AND METHODS: Cell surface expression and α-MSH- or setmelanotide-induced cAMP response, ß-arrestin-2 recruitment, and ERK activation were measured in cells expressing either wild type (WT) or variant MC4R. RESULTS: We found a large heterogeneity in the function of these variants. We identified variants with a loss of response for all studied MC4R signaling, variants with no cAMP accumulation or ERK activation but normal ß-arrestin-2 recruitment, and variants with normal cAMP accumulation and ERK activation but decreased ß-arrestin-2 recruitment, indicating disrupted desensitization and signaling mechanisms. Setmelanotide displayed a greater potency and similar efficacy as α-MSH, and induced significantly increased maximal cAMP responses of several variants compared to α-MSH. Despite the heterogeneity in functional response, there was no apparent difference in the obesity phenotype in our patients. DISCUSSION: We show that these obesity-associated MC4R variants affect MC4R signaling differently, yet leading to a comparable clinical phenotype. Our results demonstrate the clinical importance of assessing the effect of MC4R variants on a range of molecular signaling mechanisms to determine their association with obesity, which may aid in improving personalized treatment.

8.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099418

RESUMO

C­X­C motif chemokine 12 (CXCL12) promotes metastasis of several tumors by affecting cell migration and invasion via its receptors, C­X­C chemokine receptor type (CXCR)4 and CXCR7. Current therapeutic approaches focus on the selective inactivation of either CXCR4 or CXCR7 in patients with cancer. Alternative strategies may emerge from the analysis of downstream events that mediate the migratory effects of CXCL12 in cancer cells. While CXCR4 activates cell signaling through both G proteins and arrestins, CXCR7 is believed to preferentially signal through arrestins. The present study analyzed the CXCL12­dependent chemotaxis of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells, in which either the activity of G proteins, EGFR or Src kinase was inhibited pharmacologically or the expression of arrestins was inhibited by RNA interference. The results demonstrated that CXCL12­induced migration of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells was attenuated by the Gαi/o­inhibitor pertussis toxin (PTX), but was unaffected by small interfering RNA­mediated gene silencing of ß­arrestin1/2. In particular, the sensitivity of DLD­1 migration to PTX was unexpected, as it is solely dependent on the non­classical chemokine receptor, CXCR7. Furthermore, chemotactic responses to CXCL12 were additionally prevented by inhibiting EGFR activity via AG1478 and Src kinase activity via Src inhibitor­1. In conclusion, the results of the present study suggest that G protein­ and Src­dependent transactivation of EGFR is a common mechanism through which CXCL12­bound CXCR4 and/or CXCR7 control cancer cell migration and metastasis. These findings highlight EGFR as a potential therapeutic target that interferes with CXCL12­induced cancer expansion.


Assuntos
Neoplasias , Receptores CXCR , Humanos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Ativação Transcricional , Receptores CXCR/genética , Receptores CXCR/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Movimento Celular , Arrestinas/genética , Arrestinas/metabolismo , Arrestinas/farmacologia , Quinases da Família src/genética , Quinases da Família src/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
9.
Gac. méd. Méx ; 158(2): 101-107, mar.-abr. 2022. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1375535

RESUMO

Resumen Los receptores son proteínas codificadas por el ADN, algunos de los cuales ya han sido cristalizados, lo que permite conocer los detalles de su estructura a nivel atómico y algunos aspectos de su función. Esta revisión se enfoca en los más diversos y abundantes, los receptores acoplados a la proteína G. Esta familia de receptores reconoce y media la acción de varios ligandos endógenos (hormonas, neurotransmisores, factores de crecimiento y hormonas locales) y también interviene en la patogenia de diversas enfermedades, por lo que son el blanco terapéutico de aproximadamente 30 a 40 % de los medicamentos que se emplean en la práctica clínica cotidiana y de diversas drogas ilegales. La cristalografía de rayos X es una de las herramientas clave que ha permitido observar la estructura de estos receptores en los aminoácidos que participan en esta interacción, lo que posibilita conocer el sitio de unión del ligando endógeno y de moléculas sintéticas que actúan sobre ellos para modular su acción. El modelado molecular es también una herramienta bioinformática computacional que apoya la investigación sobre la unión receptor-ligando, que hace posible el diseño y desarrollo de fármacos cada vez más específicos. A estos desarrollos se suman importantes cambios en los conceptos farmacodinámicos fundamentales.


Abstract Receptors are proteins coded by DNA, some of which have already been crystalized, thus allowing the details of their structure at the atomic level and some aspects of their function to be known. This review focuses on the most diverse and abundant family of receptors, G protein-coupled receptors. This family of receptors recognizes and mediates the action of several endogenous ligands (hormones, neurotransmitters, growth factors and local hormones) and also intervenes in the pathogenesis of various diseases, which is why they are targeted by approximately 30 to 40% of medications that are used in daily clinical practice and of various illegal drugs as well. X-ray crystallography is one of the essential tools that has allowed to observe the structure of these receptors in the amino acids that participate in this interaction, which allows to know the binding site of the endogenous ligand and of synthetic molecules that act on them to modulate their action. Molecular modeling or "docking" is also a computational bioinformatics tool that supports research on receptor-ligand binding, which allows the design and development of increasingly specific drugs. These developments have brought along significant changes in fundamental pharmacodynamic concepts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA