Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Monit Assess ; 196(6): 520, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713379

RESUMO

Salt marshes pose challenges for the birds that inhabit them, including high rates of nest flooding, tipping, and predation. The impacts of rising sea levels and invasive species further exacerbate these challenges. To assess the urgency of conservation and adequacy of new actions, researchers and wildlife managers may use population viability analyses (PVAs) to identify population trends and major threats. We conducted PVA for Formicivora acutirostris, which is a threatened neotropical bird species endemic to salt marshes. We studied the species' demography in different sectors of an estuary in southern Brazil from 2006 to 2023 and estimated the sex ratio, longevity, productivity, first-year survival, and mortality rates. For a 133-year period, starting in 1990, we modeled four scenarios: (1) pessimistic and (2) optimistic scenarios, including the worst and best values for the parameters; (3) a baseline scenario, with intermediate values; and (4) scenarios under conservation management, with increased recruitment and/or habitat preservation. Projections indicated population decline for all assessment scenarios, with a 100% probability of extinction by 2054 in the pessimistic scenario and no extinction in the optimistic scenario. The conservation scenarios indicated population stability with 16% improvement in productivity, 10% improvement in first-year survival, and stable carrying capacity. The disjunct distribution of the species, with remnants concentrated in a broad interface with arboreal habitats, may seal the population decline by increasing nest predation. The species should be considered conservation dependent, and we recommend assisted colonization, predator control, habitat recovery, and ex situ conservation.


Assuntos
Conservação dos Recursos Naturais , Dinâmica Populacional , Áreas Alagadas , Animais , Brasil , Extinção Biológica , Monitoramento Ambiental/métodos , Espécies em Perigo de Extinção , Aves , Ecossistema
2.
Ecol Appl ; 32(1): e02462, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614257

RESUMO

Conservation introductions to islands and fenced enclosures are increasing as in situ mitigations fail to keep pace with population declines. Few studies consider the potential loss of genetic diversity and increased inbreeding if released individuals breed disproportionately. As funding is limited and post-release monitoring expensive for conservation programs, understanding how sampling effort influences estimates of reproductive variance is useful. To investigate this relationship, we used a well-studied population of Tasmanian devils (Sarcophilus harrisii) introduced to Maria Island, Tasmania, Australia. Pedigree reconstruction based on molecular data revealed high variance in number of offspring per breeder and high proportions of unsuccessful individuals. Computational subsampling of 20%, 40%, 60%, and 80% of observed offspring resulted in inaccurate estimates of reproductive variance compared to the pedigree reconstructed with all sampled individuals. With decreased sampling effort, the proportion of inferred unsuccessful individuals was overestimated and the variance in number of offspring per breeder was underestimated. To accurately estimate reproductive variance, we recommend sampling as many individuals as logistically possible during the early stages of population establishment. Further, we recommend careful selection of colonizing individuals as they may be disproportionately represented in subsequent generations. Within the conservation management context, our results highlight important considerations for sample collection and post-release monitoring during population establishment.


Assuntos
Marsupiais , Animais , Austrália , Cruzamento , Humanos , Marsupiais/genética , Reprodução , Tasmânia
3.
Environ Manage ; 69(6): 1186-1201, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353228

RESUMO

The negative impact of climate change on biodiversity will continue to escalate rapidly. While some species will naturally migrate to more suitable areas or adapt to the new climatic environmental conditions in different fashions, for others doing so may prove to be problematic or impossible. Against this backdrop, scientists and environmentalists have proposed implementing plans for Assisted Migration (AM)-meaning the translocation of plants and animals to areas outside their natural habitats to conserve their species under the new emerging climatic conditions. This article seeks to identify legal approaches towards AM considering not only possible benefits from using this tool but also a necessity to minimize related risks. With regard to its stated purpose, this article also compares legal and policy documents relevant to AM issues from the United States, Australia, and the European Union. In conclusion, we have found, and this article shows, that while existing legal and policy documents leave room for manoeuvreing in regard to climate-related translocations and even sometimes explicitly mention AM as a possible tool for conservation, there exists a need for the further development of concrete legal mechanisms and their balancing with the predominant ideas and goals brought about by the necessity to protect native biota.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Adaptação Fisiológica , Animais , Biodiversidade , Ecossistema , Estados Unidos
4.
Conserv Biol ; 35(2): 678-687, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32538472

RESUMO

Assisted migration is a controversial conservation measure that aims to protect threatened species by moving part of their population outside its natural range. Although this could save species from extinction, it also introduces a range of risks. The magnitude of the threat to recipient ecosystems has not been investigated quantitatively, despite being the most common criticism leveled at the action. We used an ensemble modeling framework to estimate the risks of assisted migration to existing species within ecosystems. With this approach, we calculated the consequences of an assisted migration project across a very large combination of translocated species and recipient ecosystems. We predicted the probability of a successful assisted migration and the number of local extinctions would result from establishment of the translocated species. Using an ensemble of 1.5×106 simulated 15-species recipient ecosystems, we estimated that translocated species will successfully establish in 83% of cases if introduced to stable, high-quality habitats. However, assisted migration projects were estimated to cause an average of 0.6 extinctions and 5% of successful translocations triggered 4 or more local extinctions. Quantifying the impacts to species within recipient ecosystems is critical to help managers weigh the benefits and negative consequences of assisted migration.


Modelación en Conjunto para Predecir los Impactos de la Migración Asistida sobre los Ecosistemas Receptores Resumen La migración asistida es una medida controversial de conservación que busca proteger a las especies amenazadas mediante la mudanza de parte de su población fuera de su extensión natural. Este método podría salvar a las especies de la extinción, pero también implica una gama de riesgos. La magnitud de la amenaza para el ecosistema receptor no ha sido investigada cuantitativamente a pesar de ser la crítica más común para esta acción. Usamos un marco de trabajo de modelación en conjunto para estimar los riesgos de la migración asistida para las especies existentes dentro de los ecosistemas. Mediante este enfoque calculamos las consecuencias de un proyecto de migración asistida en una combinación de especies reubicadas y ecosistemas receptores. Pronosticamos la probabilidad de una migración asistida exitosa y el número local de extinciones que resultarían de la introducción de especies reubicadas. Con un conjunto simulado de 1.5×106 ecosistemas receptores con 15 especies, estimamos que las especies reubicadas se establecerán exitosamente en 83% de los casos si son introducidas a hábitats estables y de alta calidad. Sin embargo, se estimó que los proyectos de migración asistida causarían un promedio de 0.6 extinciones y el 5% de las reubicaciones exitosas generaron cuatro o más extinciones locales. La cuantificación de los impactos para las especies dentro de los ecosistemas receptores es crítica para ayudar a los manejadores a sopesar los beneficios y las consecuencias negativas de la migración asistida.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Espécies em Perigo de Extinção , Extinção Biológica
5.
Conserv Biol ; 30(6): 1159-1172, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27119768

RESUMO

The use of conservation translocations to mitigate human effects on biodiversity is increasing, but how these efforts are allocated remains unclear. Based on a comprehensive literature review and online author survey, we sought to determine the goals of translocation efforts, whether they focus on species and regions with high threat and likelihood of perceived success, and how success might be improved. We systematically searched the ISI Web of Knowledge and Academic Search Complete databases to determine the species and regions of conservation translocations and found 1863 articles on conservation translocations in the United States, Canada, Mexico, Central America, and Caribbean published from 1974 to 2013. We questioned 330 relevant authors to determine the motivation for translocations, how translocations were evaluated, and obstacles encountered. Conservation translocations in North America were geographically widespread (in 21 countries), increased in frequency over time for all animal classes (from 1 in 1974 to 84 in 2013), and included 279 different species. Reintroductions and reinforcements were more common in the United States than in Canada and Mexico, Central America, or the Caribbean, and their prevalence was correlated with the number of species at risk at national and state or provincial levels. Translocated species had a higher threat status at state and provincial levels than globally (International Union for Conservation of Nature Red List categorization), suggesting that translocations may have been motivated by regional priorities rather than global risk. Our survey of authors was consistent with these results; most translocations were requested, supported, or funded by government agencies and downlisting species at national or state or provincial levels was the main goal. Nonetheless, downlisting was the least reported measure of success, whereas survival and reproduction of translocated individuals were the most reported. Reported barriers to success included biological factors such as animal mortality and nonbiological factors, such as financial constraints, which were less often considered in the selection of release sites. Our review thus highlights discrepancies between project goals and evaluation criteria and between risk factors considered and obstacles encountered, indicating room to further optimize translocation projects.


Assuntos
Conservação dos Recursos Naturais , Animais , Biodiversidade , América do Norte , Estados Unidos
6.
Glob Chang Biol ; 21(8): 2891-904, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25559092

RESUMO

Habitat loss and climate change pose a double jeopardy for many threatened taxa, making the identification of optimal habitat for the future a conservation priority. Using a case study of the endangered Bornean orang-utan, we identify environmental refuges by integrating bioclimatic models with projected deforestation and oil-palm agriculture suitability from the 1950s to 2080s. We coupled a maximum entropy algorithm with information on habitat needs to predict suitable habitat for the present day and 1950s. We then projected to the 2020s, 2050s and 2080s in models incorporating only land-cover change, climate change or both processes combined. For future climate, we incorporated projections from four model and emission scenario combinations. For future land cover, we developed spatial deforestation predictions from 10 years of satellite data. Refuges were delineated as suitable forested habitats identified by all models that were also unsuitable for oil palm - a major threat to tropical biodiversity. Our analyses indicate that in 2010 up to 260,000 km(2) of Borneo was suitable habitat within the core orang-utan range; an 18-24% reduction since the 1950s. Land-cover models predicted further decline of 15-30% by the 2080s. Although habitat extent under future climate conditions varied among projections, there was majority consensus, particularly in north-eastern and western regions. Across projections habitat loss due to climate change alone averaged 63% by 2080, but 74% when also considering land-cover change. Refuge areas amounted to 2000-42,000 km(2) depending on thresholds used, with 900-17,000 km(2) outside the current species range. We demonstrate that efforts to halt deforestation could mediate some orang-utan habitat loss, but further decline of the most suitable areas is to be expected given projected changes to climate. Protected refuge areas could therefore become increasingly important for ongoing translocation efforts. We present an approach to help identify such areas for highly threatened species given environmental changes expected this century.


Assuntos
Mudança Climática , Modelos Teóricos , Pongo , Animais , Bornéu , Ecossistema , Refúgio de Vida Selvagem
7.
Ann Bot ; 116(6): 849-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26555281

RESUMO

BACKGROUND: Anthropogenic climate change (ACC) will influence all aspects of plant biology over coming decades. Many changes in wild species have already been well-documented as a result of increased atmospheric CO2 concentrations, warming climate and changing precipitation regimes. A wealth of available data has allowed the use of meta-analyses to examine plant-climate interactions on more sophisticated levels than before. These analyses have revealed major differences in plant response among groups, e.g. with respect to functional traits, taxonomy, life-history and provenance. Interestingly, these meta-analyses have also exposed unexpected mismatches between theory, experimental, and observational studies. SCOPE: We reviewed the literature on species' responses to ACC, finding ∼42 % of 4000 species studied globally are plants (primarily terrestrial). We review impacts on phenology, distributions, ecophysiology, regeneration biology, plant-plant and plant-herbivore interactions, and the roles of plasticity and evolution. We focused on apparent deviations from expectation, and highlighted cases where more sophisticated analyses revealed that unexpected changes were, in fact, responses to ACC. CONCLUSIONS: We found that conventionally expected responses are generally well-understood, and that it is the aberrant responses that are now yielding greater insight into current and possible future impacts of ACC. We argue that inconclusive, unexpected, or counter-intuitive results should be embraced in order to understand apparent disconnects between theory, prediction, and observation. We highlight prime examples from the collection of papers in this Special Issue, as well as general literature. We found use of plant functional groupings/traits had mixed success, but that some underutilized approaches, such as Grime's C/S/R strategies, when incorporated, have improved understanding of observed responses. Despite inherent difficulties, we highlight the need for ecologists to conduct community-level experiments in systems that replicate multiple aspects of ACC. Specifically, we call for development of coordinating experiments across networks of field sites, both natural and man-made.


Assuntos
Mudança Climática , Plantas/metabolismo , Evolução Biológica , Dióxido de Carbono/metabolismo , Flores/metabolismo , Espécies Introduzidas , Fenótipo , Plantas/genética , Plântula/fisiologia , Sementes/fisiologia
8.
Conserv Biol ; 29(6): 1537-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26372611

RESUMO

We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large-scale habitat destruction caused by the Three-Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific-based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation-wide conservation program on species with extremely small populations, which is expected to stimulate conservation translocations for many species in the near future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Dispersão Vegetal , China
9.
Glob Chang Biol ; 18(9): 2743-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501053

RESUMO

The distributional ranges of many species are contracting with habitat conversion and climate change. For vertebrates, informed strategies for translocations are an essential option for decisions about their conservation management. The pygmy bluetongue lizard, Tiliqua adelaidensis, is an endangered reptile with a highly restricted distribution, known from only a small number of natural grassland fragments in South Australia. Land-use changes over the last century have converted perennial native grasslands into croplands, pastures and urban areas, causing substantial contraction of the species' range due to loss of essential habitat. Indeed, the species was thought to be extinct until its rediscovery in 1992. We develop coupled-models that link habitat suitability with stochastic demographic processes to estimate extinction risk and to explore the efficacy of potential climate adaptation options. These coupled-models offer improvements over simple bioclimatic envelope models for estimating the impacts of climate change on persistence probability. Applying this coupled-model approach to T. adelaidensis, we show that: (i) climate-driven changes will adversely impact the expected minimum abundance of populations and could cause extinction without management intervention, (ii) adding artificial burrows might enhance local population density, however, without targeted translocations this measure has a limited effect on extinction risk, (iii) managed relocations are critical for safeguarding lizard population persistence, as a sole or joint action and (iv) where to source and where to relocate animals in a program of translocations depends on the velocity, extent and nonlinearities in rates of climate-induced habitat change. These results underscore the need to consider managed relocations as part of any multifaceted plan to compensate the effects of habitat loss or shifting environmental conditions on species with low dispersal capacity. More broadly, we provide the first step towards a more comprehensive framework for integrating extinction risk, managed relocations and climate change information into range-wide conservation management.

10.
Ecol Evol ; 7(21): 9119-9130, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152202

RESUMO

Hawaiian forest birds are imperiled, with fewer than half the original >40 species remaining extant. Recent studies document ongoing rapid population decline and project complete climate-based range losses for the critically endangered Kaua'i endemics 'akeke'e (Loxops caeruleirostris) and 'akikiki (Oreomystis bairdi) by end-of-century due to projected warming. Climate change facilitates the upward expansion of avian malaria into native high elevation forests where disease was historically absent. While intensified conservation efforts attempt to safeguard these species and their habitats, the magnitude of potential loss and the urgency of this situation require all conservation options to be seriously considered. One option for Kaua'i endemics is translocation to islands with higher elevation habitats. We explored the feasibility of interisland translocation by projecting baseline and future climate-based ranges of 'akeke'e and 'akikiki across the Hawaiian archipelago. For islands where compatible climates for these species were projected to endure through end-of-century, an additional climatic niche overlap analysis compares the spatial overlap between Kaua'i endemics and current native species on prospective destination islands. Suitable climate-based ranges exist on Maui and Hawai'i for these Kaua'i endemics that offer climatically distinct areas compared to niche distributions of destination island endemics. While we recognize that any decision to translocate birds will include assessing numerous additional social, political, and biological factors, our focus on locations of enduring and ecologically compatible climate-based ranges represents the first step to evaluate this potential conservation option. Our approach considering baseline and future distributions of species with climatic niche overlap metrics to identify undesirable range overlap provides a method that can be utilized for other climate-vulnerable species with disjointed compatible environments beyond their native range.

11.
F1000Res ; 42015.
Artigo em Inglês | MEDLINE | ID: mdl-26937271

RESUMO

An increased understanding of the current and potential future impacts of climate change has significantly influenced conservation in practice in recent years. Climate change has necessitated a shift toward longer planning time horizons, moving baselines, and evolving conservation goals and targets. This shift has resulted in new perspectives on, and changes in, the basic approaches practitioners use to conserve biodiversity. Restoration, spatial planning and reserve selection, connectivity modelling, extinction risk assessment, and species translocations have all been reimagined in the face of climate change. Restoration is being conducted with a new acceptance of uncertainty and an understanding that goals will need to shift through time. New conservation targets, such as geophysical settings and climatic refugia, are being incorporated into conservation plans. Risk assessments have begun to consider the potentially synergistic impacts of climate change and other threats. Assisted colonization has gained acceptance in recent years as a viable and necessary conservation tool. This evolution has paralleled a larger trend in conservation-a shift toward conservation actions that benefit both people and nature. As we look forward, it is clear that more change is on the horizon. To protect biodiversity and essential ecosystem services, conservation will need to anticipate the human response to climate change and to focus not only on resistance and resilience but on transitions to new states and new ecosystems.

12.
Trends Ecol Evol ; 29(3): 140-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24513302

RESUMO

Technological advances have raised the controversial prospect of resurrecting extinct species. Species DeExtinction should involve more than the production of biological orphans to be scrutinized in the laboratory or zoo. If DeExtinction is to realize its stated goals of deep ecological enrichment, then resurrected animals must be translocated (i.e., released within suitable habitat). Therefore, DeExtinction is a conservation translocation issue and the selection of potential DeExtinction candidates must consider the feasibility and risks associated with reintroduction. The International Union for the Conservation of Nature (IUCN) Guidelines on Reintroductions and Other Conservation Translocations provide a framework for DeExtinction candidate selection. We translate these Guidelines into ten questions to be addressed early on in the selection process to eliminate unsuitable reintroduction candidates. We apply these questions to the thylacine, Yangtze River Dolphin, and Xerces blue butterfly.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Extinção Biológica , Animais , Participação da Comunidade , Monitoramento Ambiental , Humanos , Internacionalidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA