RESUMO
Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.
RESUMO
The last two decades have seen a dramatic decline and strong year-to-year variability in Arctic winter sea ice, especially in the Barents-Kara Sea (BKS), changes that have been linked to extreme midlatitude weather and climate. It has been suggested that these changes in winter sea ice arise largely from a combined effect of oceanic and atmospheric processes, but the relative importance of these processes is not well established. Here, we explore the role of atmospheric circulation patterns on BKS winter sea ice variability and trends using observations and climate model simulations. We find that BKS winter sea ice variability is primarily driven by a strong anticyclonic anomaly over the region, which explains more than 50% of the interannual variability in BKS sea-ice concentration (SIC). Recent intensification of the anticyclonic anomaly has warmed and moistened the lower atmosphere in the BKS by poleward transport of moist-static energy and local processes, resulting in an increase in downwelling longwave radiation. Our results demonstrate that the observed BKS winter sea-ice variability is primarily driven by atmospheric, rather than oceanic, processes and suggest a persistent role of atmospheric forcing in future Arctic winter sea ice loss.
Assuntos
Atmosfera , Camada de Gelo , Regiões Árticas , Clima , Camada de Gelo/química , Oceanos e Mares , Estações do Ano , TempoRESUMO
Tidally locked exoplanets likely host global atmospheric circulations with a superrotating equatorial jet, planetary-scale stationary waves, and thermally driven overturning circulation. In this work, we show that each of these features can be separated from the total circulation by using a Helmholtz decomposition, which splits the circulation into rotational (divergence-free) and divergent (vorticity-free) components. This technique is applied to the simulated circulation of a terrestrial planet and a gaseous hot Jupiter. For both planets, the rotational component comprises the equatorial jet and stationary waves, and the divergent component contains the overturning circulation. Separating out each component allows us to evaluate their spatial structure and relative contribution to the total flow. In contrast with previous work, we show that divergent velocities are not negligible when compared with rotational velocities and that divergent, overturning circulation takes the form of a single, roughly isotropic cell that ascends on the day side and descends on the night side. These conclusions are drawn for both the terrestrial case and the hot Jupiter. To illustrate the utility of the Helmholtz decomposition for studying atmospheric processes, we compute the contribution of each of the circulation components to heat transport from day side to night side. Surprisingly, we find that the divergent circulation dominates day-night heat transport in the terrestrial case and accounts for around half of the heat transport for the hot Jupiter. The relative contributions of the rotational and divergent components to day-night heat transport are likely sensitive to multiple planetary parameters and atmospheric processes and merit further study.
RESUMO
Previous studies have identified a recent increase in wildfire activity in the western United States (WUS). However, the extent to which this trend is due to weather pattern changes dominated by natural variability versus anthropogenic warming has been unclear. Using an ensemble constructed flow analogue approach, we have employed observations to estimate vapor pressure deficit (VPD), the leading meteorological variable that controls wildfires, associated with different atmospheric circulation patterns. Our results show that for the period 1979 to 2020, variation in the atmospheric circulation explains, on average, only 32% of the observed VPD trend of 0.48 ± 0.25 hPa/decade (95% CI) over the WUS during the warm season (May to September). The remaining 68% of the upward VPD trend is likely due to anthropogenic warming. The ensemble simulations of climate models participating in the sixth phase of the Coupled Model Intercomparison Project suggest that anthropogenic forcing explains an even larger fraction of the observed VPD trend (88%) for the same period and region. These models and observational estimates likely provide a lower and an upper bound on the true impact of anthropogenic warming on the VPD trend over the WUS. During August 2020, when the August Complex "Gigafire" occurred in the WUS, anthropogenic warming likely explains 50% of the unprecedented high VPD anomalies.
Assuntos
Efeitos Antropogênicos , Modelos Climáticos , Tempo (Meteorologia) , Incêndios Florestais , Noroeste dos Estados Unidos , Medição de Risco , Sudoeste dos Estados UnidosRESUMO
Against the background of climate warming and humidification, the so-called 'divergence problem' reduces the stability of tree rings in response to climate, and affects the reliability of tree-ring reconstruction. Investigation of the divergence problem is crucial to improve our understanding of the response patterns of trees to climate warming, and provide a scientific basis for accurate climate reconstruction. Based on tree-ring width data for Siberian larch (Larix sibirica Ledeb.) growing at low elevations in the eastern Altay Mountains, we analyzed the relationship between radial growth of trees and climatic factors in the context of abrupt climate change in this region. We calculated the proportional contribution of five climatic factors to the radial growth of trees, and discussed the response mechanism of radial growth of L. sibirica in combination with large-scale atmospheric circulation patterns. The radial growth of L. sibirica was mainly constrained by water availability. Before climate warming (1961-1990), the radial growth of L. sibirica was mainly limited by temperature in the previous June. After abrupt climate warming (1991-2020), there was a significant positive correlation between growth and soil moisture in the previous winter, suggesting that high temperatures in the following spring would limit tree radial growth if water availability was low. The attribution analysis results revealed that, before 1990, the proportional of relative contribution of temperature to radial growth of trees exceeded 60%. Since 1990, the proportional of relative contribution of water (precipitation and volumetric soil water) to growth of L. sibirica increased. This might reflect the combined effects of local climatic conditions and changes in large-scale atmospheric circulation.
RESUMO
At high exposure levels, airborne pollen grains and fungal spores (termed aerospora hereafter), can trigger severe allergic respiratory diseases. For South Africa's administrative capital Pretoria, which boasts dense vegetation within a large urban forest, it is valuable from a health perspective to understand daily atmospheric circulation patterns associated with high aerospora levels. Therefore, we utilised a daily aerospora grain count dataset collected in Pretoria from 08/2019-02/2023 to investigate atmospheric circulation patterns (derived from ERA5 reanalysis sea level pressure [SLP] and 500 hPa geopotential height [zg500] fields) associated with high-risk aerospora levels (aerospora grain count > 90th percentile). Concentrated during October-May, there were 128 high-risk days, with 69.6% of days occurring in November, February and April. Although generally above-average mid-tropospheric subsidence levels prevailed over Pretoria during high-risk days, no single distinct atmospheric circulation pattern was associated with these high-risk days. Therefore, using Principal Component Analysis, we classified 14 Circulation Weather Types (CWTs) for October-May months between 08/2019-02/2023 to assess which CWTs most frequently occurred during high-risk days. Three CWTs had a statistically significant proportion of high-risk days - collectively they occurred during 37.1% of days studied, yet accounted for 45.3% of high-risk days. Among these CWTs, two CWTs were similarly associated with surface and mid-tropospheric high-pressure conditions, while the third was associated with a surface and mid-tropospheric trough. By comparing our CWT classification to daily synoptic charts (from the South African Weather Service), our classification can be used to identify days with potentially high allergenicity risk over Pretoria.
RESUMO
While the COVID-19 pandemic is still in progress, being under the fifth COVID-19 wave in Madrid, over more than one year, Spain experienced a four wave pattern. The transmission of SARS-CoV-2 pathogens in Madrid metropolitan region was investigated from an urban context associated with seasonal variability of climate and air pollution drivers. Based on descriptive statistics and regression methods of in-situ and geospatial daily time series data, this study provides a comparative analysis between COVID-19 waves incidence and mortality cases in Madrid under different air quality and climate conditions. During analyzed period 1 January 2020-1 July 2021, for each of the four COVID-19 waves in Madrid were recorded anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere and favorable stability conditions for COVID-19 disease fast spreading. As airborne microbial temporal pattern is most affected by seasonal changes, this paper found: 1) a significant negative correlation of air temperature, Planetary Boundary Layer height, and surface solar irradiance with daily new COVID-19 incidence and deaths; 2) a similar mutual seasonality with climate variables of the first and the fourth COVID-waves from spring seasons of 2020 and 2021 years. Such information may help the health decision makers and public plan for the future.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Pandemias , SARS-CoV-2 , Espanha/epidemiologiaRESUMO
During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Radônio , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Humanos , Pandemias , Material Particulado/análise , Radônio/análise , Romênia/epidemiologia , SARS-CoV-2 , Fatores de TempoRESUMO
Vegetation phenology is one of the key agroclimatic indices that is sensitive to climate change. Analyzing the variation in plant phenology under a changing environment can provide reference information to assess the impact of climate change on ecosystems and agricultural management. In this study, we focused on the thermal growth season, an important phenology index. We defined four growing season indices based on the surface temperature to quantify the changes in thermal growth season and analyze their association with atmospheric circulation in China. The results showed that the start date of the growing season exhibited a significant advanced trend (P < 0.001), while the end date exhibited a significant delayed trend (P < 0.001). The length of growing season and the number of ≥ 10â days increased significantly in China (P < 0.001) from 1960 to 2018. The variation in thermal growth season differed in different regions. The Qinghai-Tibet Plateau and the Loess Plateau were the regions in which thermal growing season was the most sensitive to climate changes. Atmospheric circulation was one of the main factors affected the change in thermal growing season indices. The West Pacific Subtropical High Intensity Index and the Arctic Oscillation Index significantly negatively correlated with the start date of the growing season (P < 0.05), and significantly positively correlated with the length of growing season and the number of ≥ 10â days (P < 0.01). Atmospheric circulation affected the change in temperature and subsequently affected the thermal growth season. These findings will provide useful information to assess the risk assessment of climate change and take action to reduce in the impact of climate change on ecosystems and agricultural management.
Assuntos
Mudança Climática , Ecossistema , China , Estações do Ano , TemperaturaRESUMO
The current pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having negative health, social and economic consequences worldwide. In Europe, the pandemic started to develop strongly at the end of February and beginning of March 2020. Subsequently, it spread over the continent, with special virulence in northern Italy and inland Spain. In this study we show that an unusual persistent anticyclonic situation prevailing in southwestern Europe during February 2020 (i.e. anomalously strong positive phase of the North Atlantic and Arctic Oscillations) could have resulted in favorable conditions, e.g., in terms of air temperature and humidity among other factors, in Italy and Spain for a quicker spread of the virus compared with the rest of the European countries. It seems plausible that the strong atmospheric stability and associated dry conditions that dominated in these regions may have favored the virus propagation, both outdoors and especially indoors, by short-range droplet and aerosol (airborne) transmission, or/and by changing social contact patterns. Later recent atmospheric circulation conditions in Europe (July 2020) and the U.S. (October 2020) seem to support our hypothesis, although further research is needed in order to evaluate other confounding variables. Interestingly, the atmospheric conditions during the Spanish flu pandemic in 1918 seem to have resembled at some stage with the current COVID-19 pandemic.
Assuntos
COVID-19 , Influenza Pandêmica, 1918-1919 , Europa (Continente) , Humanos , Itália/epidemiologia , Pandemias , SARS-CoV-2 , Espanha/epidemiologiaRESUMO
BACKGROUND: The impact of weather on morbidity from stroke has been analysed in previous studies. As the risk of stroke was mostly associated with changing weather, the changes in the daily stroke occurrence may be associated with changes in atmospheric circulation. The aim of our study was to detect and evaluate the association between daily numbers of ischaemic strokes (ISs) and haemorrhagic strokes (HSs) and the teleconnection pattern. METHODS: The study was performed in Kaunas, Lithuania, from 2000 to 2010. The daily numbers of ISs, subarachnoid haemorrhages (SAHs), and intracerebral haemorrhages (ICHs) were obtained from the Kaunas Stroke Register. We evaluated the association between these types of stroke and the teleconnection pattern by applying Poisson regression and adjusting for the linear trend, month, and other weather variables. RESULTS: During the study period, we analysed 4038 cases (2226 men and 1812 women) of stroke. Of these, 3245 (80.4%) cases were ISs, 533 (13.2%) cases were ICHs, and 260 (6.4%) cases were SAHs. An increased risk of SAH was associated with a change in mean daily atmospheric pressure over 3.9 hPa (RR = 1.49, 95% CI 1.14-1.96), and a stronger El Niño event had a protective effect against SAHs (RR = 0.34, 95% CI 0.16-0.69). The risk of HS was positively associated with East Atlantic/West Russia indices (RR = 1.13, 95% CI 1.04-1.23). The risk of IS was negatively associated with the Arctic Oscillation index on the same day and on the previous day (RR = 0.97, p < 0.033). During November-March, the risk of HS was associated with a positive North Atlantic Oscillation (NAO) (RR = 1.29, 95% CI 1.03-1.62), and the risk of IS was negatively associated with the NAO index (RR = 0.92, 95% CI 0.85-0.99). CONCLUSIONS: The results of our study provide new evidence that the North Atlantic Oscillation, Arctic Oscillation, East Atlantic/West Russia, and El Niño-Southern Oscillation pattern may affect the risk of stroke. The impact of these teleconnections is not identical for various types of stroke. Emergency services should be aware that specific weather conditions are more likely to prompt calls for more severe strokes.
Assuntos
Acidente Vascular Cerebral , Tempo (Meteorologia) , Feminino , Humanos , Lituânia , Masculino , Federação Russa , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologiaRESUMO
Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20°N, 156°W), which has the longest continuous northern hemisphere CO2 record, shows an increasing SCA before the 1980s (p < .01), followed by no significant change thereafter. We analyzed the potential driving factors of SCA slowing-down, with an ensemble of dynamic global vegetation models (DGVMs) coupled with an atmospheric transport model. We found that slowing-down of SCA at MLO is primarily explained by response of net biome productivity (NBP) to climate change, and by changes in atmospheric circulations. Through NBP, climate change increases SCA at MLO before the 1980s and decreases it afterwards. The effect of climate change on the slowing-down of SCA at MLO is mainly exerted by intensified drought stress acting to offset the acceleration driven by CO2 fertilization. This challenges the view that CO2 fertilization is the dominant cause of emergent SCA trends at northern sites south of 40°N. The contribution of agricultural intensification on the deceleration of SCA at MLO was elusive according to land-atmosphere CO2 flux estimated by DGVMs and atmospheric inversions. Our results also show the necessity to adequately account for changing circulation patterns in understanding carbon cycle dynamics observed from atmospheric observations and in using these observations to benchmark DGVMs.
Assuntos
Ciclo do Carbono , Dióxido de Carbono , Animais , Atmosfera , Mudança Climática , Ecossistema , Estações do AnoRESUMO
Land and sea surface temperatures, precipitation, and storm tracks in North America and the North Pacific are controlled to a large degree by atmospheric variability associated with the Pacific North American (PNA) pattern. The modern instrumental record indicates a trend toward a positive PNA phase in recent decades, which has led to accelerated warming and snowpack decline in northwestern North America. The brevity of the instrumental record, however, limits our understanding of long-term PNA variability and its directional or cyclic patterns. Here we develop a 937-y-long reconstruction of the winter PNA based on a network of annually resolved tree-ring proxy records across North America. The reconstruction is consistent with previous regional records in suggesting that the recent persistent positive PNA pattern is unprecedented over the past millennium, but documents patterns of decadal-scale variability that contrast with previous reconstructions. Our reconstruction shows that PNA has been strongly and consistently correlated with sea surface temperature variation, solar irradiance, and volcanic forcing over the period of record, and played a significant role in translating these forcings into decadal-to-multidecadal hydroclimate variability over North America. Climate model ensembles show limited power to predict multidecadal variation in PNA over the period of our record, raising questions about their potential to project future hydroclimatic change modulated by this circulation pattern.
RESUMO
Cold- and heat-related mortality poses significant public health concerns worldwide. Although there are numerous studies dealing with the association between extreme ambient temperature and mortality, only a small number adopt a synoptic climatological approach in order to understand the nature of weather systems that precipitate increases in cold- or heat-related mortality. In this paper, the Lamb Weather Type synoptic classification is used to examine the relationship between daily mortality and weather patterns across nine regions of England. Analysis results revealed that the population in England is more susceptible to cold weather. Furthermore, it was found that the Easterly weather types are the most hazardous for public health all-year-long; however, during the cold period, the results are more evident and spatially homogenous. Nevertheless, it is noteworthy that the most dangerous weather conditions are not always associated with extreme (high or low) temperatures, a finding which points to the complexity of weather-related health effects and highlights the importance of a synoptic climatological approach in elucidating the relationship between temperature and mortality.
Assuntos
Meteorologia , Tempo (Meteorologia) , Temperatura Baixa , Inglaterra , Temperatura Alta , Mortalidade , Estações do AnoRESUMO
Aquatic ecosystem sustainability around the globe is facing crucial challenges because of increasing anthropogenic and natural disturbances. In this study, the Tianchi Lake, a typical cold-water lake and a UNESCO/MAB (Man and Biosphere) nature reserve located in high latitude and elevation with the relatively low intensity of human activity was chosen as a system to examine the linkages between climate change and eutrophication. As a part of the UNESCO Bogda Man and Biosphere Reserve, Tianchi Lake has been well preserved for prevention from human intervention, but why has it been infected with eutrophication recent years? Our results show that climate change played a significant role in the eutrophication in the Tianchi Lake. Increased temperature, changed precipitation pattern and wind-induced hydrodynamic fluctuations in the summer season were suggested to make a major contribution to the accelerated eutrophication. The results also showed that the local temperature and precipitation changes were closely linked to the large-scale atmospheric circulation, which opens the door for the method to be applied in other regions without local climatic information. This study suggests that there is an urgent need to take into consideration of climate change adaptation into the conservation and management of cold-water lakes globally.
Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental , Eutrofização , Lagos , Temperatura BaixaRESUMO
A new measure of subseasonal variability is introduced that provides a scale-dependent estimation of vertically and meridionally integrated atmospheric variability in terms of the normal modes of linearized primitive equations. Applied to the ERA-Interim data, the new measure shows that subseasonal variability decreases for larger zonal wave numbers. Most of variability is due to balanced (Rossby mode) dynamics but the portion associated with the inertio-gravity (IG) modes increases as the scale reduces. Time series of globally integrated variability anomalies in ERA-Interim show an increase in variability after year 2000. In recent years the anomalies have been about 2% above the 1981-2010 average. The relative increase in variability projecting on the IG modes is larger and more persistent than for the Rossby modes. Although the IG part is a small component of the subseasonal variability, it is an important effect likely reflecting the observed increase in the tropical precipitation variability.
RESUMO
Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.
RESUMO
Being in vicinity of vast deserts, the west and southwest of Iran are characterized by high levels of dust events, which have adverse consequences on human health, ecosystems, and environment. Using ground based dataset of dust events in western Iran and NCEP/NCAR reanalysis data, the atmospheric circulation patterns of dust events in the Arabian region and west of Iran are identified. The atmospheric circulation patterns which lead to dust events in the Arabian region and western Iran were classified into two main categories: the Shamal dust events that occurs in warm period of year and the frontal dust events as cold period pattern. In frontal dust events, the western trough or blocking pattern at mid-level leads to frontogenesis, instability, and air uplift at lower levels of troposphere in the southwest of Asia. Non-frontal is other pattern of dust event in the cold period and dust generation are due to the regional circulation systems at the lower level of troposphere. In Shamal wind pattern, the Saudi Arabian anticyclone, Turkmenistan anticyclone, and Zagros thermal low play the key roles in formation of this pattern. Summer and transitional patterns are two sub-categories of summer Shamal wind pattern. In summer trough pattern, the mid-tropospheric trough leads to intensify the surface thermal systems in the Middle East and causes instability and rising of wind speed in the region. In synthetic pattern of Shamal wind and summer trough, dust is created by the impact of a trough in mid-levels of troposphere as well as existing the mentioned regional systems which are contributed in formation of summer Shamal wind pattern.
Assuntos
Poluentes Atmosféricos/análise , Tempestades Ciclônicas , Clima Desértico , Poeira/análise , Monitoramento Ambiental/métodos , Ecossistema , Humanos , Irã (Geográfico) , Meteorologia , Estações do Ano , VentoRESUMO
In the buoyancy and turbulence-driven atmospheric circulations (BTDAC) that occur over urban areas where the approach means wind speeds are very low (less than turbulent fluctuations and typically <3m/sec), the surface temperatures are significantly higher than those in the external rural areas, and the atmosphere above the mixing layer is stably stratified. In this paper, the mechanisms of BTDAC formation are studied through laboratory experiments and modelling, with additional low-level inflow from external rural areas and a divergent outflow in the opposite direction in the upper part of the mixed layer. Strong turbulent plumes in the central region mix the flow between lower and higher levels up to the inversion height. There are shear-driven turbulent eddies and weaker buoyant plumes around the periphery of the urban area. As the approach flow is very weak, the recirculating streamlines within the dome restrict the ventilation, and the dispersion of pollution emitted from sources below the inversion height leading to a rise in the mean concentration. Low-level air entrained from rural areas can, however, improve ventilation and lower this concentration. This trend can also be improved if the recirculating structure of the BTDAC flow pattern over urban areas breaks down as a result of the surface temperature distribution not being symmetrical, or as the approach wind speed increases to a level comparable with the mean velocity of circulation, or (except near the equator) the urban area is large enough that the Coriolis acceleration is significant.
Assuntos
Movimentos do Ar , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Modelos QuímicosRESUMO
The onset of flowering in 78 wild and domesticated terrestrial plant species recorded in South Moravia (Czech Republic) from 1965 to 2014 was correlated with the North Atlantic Oscillation (NAO) index of the preceding winter. Flowering occurred significantly earlier following positive winter NAO phases (causing spring to be warmer than normal in Central Europe) in nearly all early-flowering (March, April) species; high Pearson correlation values were recorded in, e.g., goat willow, spring snowflake, golden bell, cornelian cherry, sweet violet, cherry plum, grape hyacinth, apricot, blackthorn, common dandelion, cherry, southern magnolia, common apple, cuckoo flower, European bird cherry, and cherry laurel. In contrast, the timing of later-flowering plant species (May to July) did not correlate significantly with the winter NAO index. It was found that local temperature is obviously a proximate factor of plant phenology, while the winter NAO is the ultimate factor, affecting temperature and other meteorological phenomena in Central Europe during spring season.