Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848333

RESUMO

The intricate interplay between light and matter provides effective tools for manipulating topological phenomena. Here, we theoretically propose and computationally show that circularly polarized light holds the potential to transform the axion insulating phase into a quantum anomalous Hall state in MnBi2Te4 thin films, featuring tunable Chern numbers (ranging up to ±2). In particular, we reveal the spatial rearrangement of the hidden layer-resolved anomalous Hall effect under light-driven Floquet engineering. Notably, upon Bi2Te3 layer intercalation, the anomalous Hall conductance predominantly localizes in the nonmagnetic Bi2Te3 layers that hold zero Berry curvature in the intact state, suggesting a significant magnetic proximity effect. Additionally, we estimate variations in the magneto-optical Kerr effect, giving a contactless method for detecting topological transitions. Our work not only presents a strategy to investigate emergent topological phases but also sheds light on the possible applications of the layer Hall effect in topological antiferromagnetic spintronics.

2.
Small ; 20(23): e2309318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174636

RESUMO

Graphene, a promising material with excellent properties, suffers from a major limitation in electronics due to its zero bandgap. The gas molecules adsorption has proven to be an effective approach for band regulation, which usually requires a harsh environment. Here, O2 - ions produced with triboelectric plasma are used for in situ regulation of graphene, and the switching ratio can reach 1010. The O2 - ions physical adsorption will reduce the Fermi-level (EF) of graphene. As the EF of graphene is lower than the lowest unoccupied molecular orbital (LUMO) level of O2-, the adsorption of O2 - changes from uniform physical adsorption to local chemical adsorption, thereby realizing the semiconductor properties of graphene. The local graphene bandgap is calculated to be 83.4 meV by the variable-temperature experiment. Furthermore, annealing treatment can restore to 1/10 of the initial conductance. The C─O bond formed by O2 - adsorption has low bond energy and is easy to desorb, while the C═O bond formed by adsorption on defects and edges has higher bond energy and is difficult to desorb. The study proposes a simple in situ method to investigate the microscopic process of O2 - adsorption on the graphene surface, demonstrating a new perspective for local energy band engineering of graphene.

3.
Small ; 20(12): e2306701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948419

RESUMO

Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state refrigeration makes it imperative to enhance the figure-of-merits. In this study, high-performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density-of-states effective mass (md *), compensating for the loss of "donor-like effect" exacerbated by ball milling. The subsequent Se addition further increases md *, enabling a total 28% improvement of room-temperature power factor (S2σ), reaching 43.6 µW cm-1 K-2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu-rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300-500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17-pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST-based TE modules.

4.
Small ; 19(41): e2302859, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291733

RESUMO

Violet phosphorus (VP), a recently confirmed layered elemental structure, is demonstrated to have unique photoelectric, mechanical, and photocatalytic properties. Element substitution plays a significant role in modifying the physical/chemical properties of semiconducting materials. Herein, antimony is adopted to substitute some phosphorus atoms in VP crystals to tune their physical and chemical properties, resulting in a significantly enhanced photocatalytic hydrogen evolution performance. The antimony-substituted violet phosphorus single crystal (VP-Sb) is synthesized and characterized by single crystal X-ray diffraction (CSD-2214937). The bandgap of VP-Sb has been found to be lowered from that of VP by UV/vis diffuse reflectance spectroscopy and density-functional theory (DFT) calculation, enhancing the optical absorption during photocatalytic reaction. The conducting band minimum of VP-Sb is found to be upshifted from that of VP from measurements and calculation, enhancing its hydrogen reduction activity. The valance band maximum is found to be lowered to weaken its oxidation activity. The edge of VP-Sb is calculated to have an excellent H* adsorption-desorption performance and superior H2 generation kinetics. The H2 evolution rate of VP-Sb is demonstrated to be significantly enhanced to be 1473 µmol h-1 g-1 , about five times of that of pristine VP (299 µmol h-1 g-1 ) under the same experimental conditions.

5.
Nanotechnology ; 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35584618

RESUMO

Monolayer α-phase GeS is promising for many novel applications due to its high carrier mobility and suitable bandgap. Recently, the metal and nonmetal zigzag edges of monolayer α-phase GeS have been predicted to undergo universal ZZ(Ge-Tube)/ZZ(S-R) edge reconstruction. Therefore, studies on GeSNR should be reconsidered. In this paper, we study the quantum confinement effects on the electronic properties of edge reconstructed monolayer GeS nanoribbon by using first-principles calculations. As width of the nanoribbon increases from 10 Å to 41 Å, the band gap keeps indirect and linearly decreases from 1.57 eV to 0.87 eV. Robust spatial separation of valence band maximum and conduction band minimum exist in reconstructed GeS nanoribbon with width larger than 19 Å. Moreover, high carrier mobility is expected in the reconstructed GeS nanoribbon. Our results suggest that reconstructed GeS nanoribbon is an important candidate for optoelectronics and photocatalytic.

6.
Nano Lett ; 21(1): 680-685, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337891

RESUMO

Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.

7.
Rep Prog Phys ; 84(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33477132

RESUMO

Wide bandgap aluminum gallium nitride (AlGaN) semiconductor alloys have established themselves as the key materials for building ultraviolet (UV) optoelectronic and power electronic devices. However, further improvements to device performance are lagging, largely due to the difficulties in precisely controlling carrier behavior, both carrier generation and carrier transport, within AlGaN-based devices. Fortunately, it has been discovered that instead of using AlGaN layers with fixed Al compositions, by grading the Al composition along the growth direction, it is possible to (1) generate high-density electrons and holes via polarization-induced doping; (2) manipulate carrier transport behavior via energy band modulation, also known as 'band engineering'. Consequently, such compositionally graded AlGaN alloys have attracted extensive interest as promising building blocks for efficient AlGaN-based UV light emitters and power electronic devices. In this review, we focus on the unique physical properties of graded AlGaN alloys and highlight the key roles that such graded structures play in device exploration. Firstly, we elaborate on the underlying mechanisms of efficient carrier generation and transport manipulation enabled by graded AlGaN alloys. Thereafter, we comprehensively summarize and discuss the recent progress in UV light emitters and power electronic devices incorporating graded AlGaN structures. Finally, we outline the prospects associated with the implementation of graded AlGaN alloys in the pursuit of high-performance optoelectronic and power electronic devices.

8.
Chemistry ; 27(62): 15479-15483, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34494698

RESUMO

Herein, we report a detailed structural, electric, thermal and optical analysis of a titanium and tantalum phosphate LiNaTiTa2 P2 O13 . The title compound is comprised of typical ReO3 -type layers constituted by corner-sharing TiO6 and TaO6 octahedra, bridged by PO4 tetrahedra, and the structure is closely related to monophosphate niobium bronzes. The existence of pentagonal tunnels, hosting the Li+ and Na+ ions, endows LiNaTiTa2 P2 O13 a moderate ion transportation behavior (4.67×10-4  S/cm at 823 K). In addition, the successful substitution of Nb for Ta in LiNaTiTa2 P2 O13 results in the optical absorption red-shift towards visible range with a narrowing band gap, which may provide a route of isomorphic replacement to band engineering for photo-catalysis.

9.
Nanotechnology ; 32(35)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34038884

RESUMO

Van der Waals (vdW) heterojunctions constructed by vertical stacking two-dimensional transition metal dichalcogenides hold exciting promise in realizing future atomically thin electronic and optoelectronic devices. Recently, a Janus WSSe structure has been successfully synthesized by using chemical vapor deposition, selective epitaxy atomic replacement, and pulsed laser deposition methods. Herein, based on first-principles calculations, we introduce the structures and performances of MoS2/WSSe vdW heterojunctions with different interfaces and stacking modes. The vdW heterojunctions possess indirect band gaps for S-S interfaces, while direct band gaps for Se-S interfaces. Besides, the potential drop indicates an efficient separation of photogenerated charges. Interestingly, the opposite built-in electric fields formed in the vdW heterojunctions with a S-S interface and a Se-S interface suggest different charge transfer paths, which would motivate further theoretical and experimental investigations on charge transfer dynamics. Moreover, the electronic property is adjustable by applying external in-plane strains, accomplishing with indirect to direct bandgap transition and semiconductor to metal transition. The findings are helpful for the design of multi-functional high-performance electronic and optoelectronic devices based on the MoS2/WSSe vdW heterojunctions.

10.
Nano Lett ; 20(3): 2157-2162, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083884

RESUMO

The formation of the Dirac nodal line (DNL) requires intrinsic symmetry that can protect the degeneracy of continuous Dirac points in momentum space. Here, as an alternative approach, we propose an extrinsic symmetry protected DNL. On the basis of symmetry analysis and numerical calculations, we establish a general principle to design the nonsymmorphic symmetry protected 4-fold degenerate DNL against spin-orbit coupling in the nanopatterned 2D electron gas. Furthermore, on the basis of experimental measurements, we demonstrate the approximate realization of our proposal in the Bi/Cu(111) system, in which a highly dispersive DNL is observed at the boundary of the Brillouin zone. We envision that the extrinsic symmetry engineering will greatly enhance the ability for artificially constructing the exotic topological bands in the future.

11.
Nano Lett ; 20(7): 5359-5366, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543201

RESUMO

Two-dimensional (2D) van der Waals heterostructures have attracted enormous research interests due to their emergent electrical and optical properties. The comprehensive understanding and efficient control of interlayer couplings in such devices are crucial for realizing their functionalities, as well as for improving their performance. Here, we report a successful manipulation of interlayer charge transfer between 2D materials by varying different stacking layers consisting of graphene, hexagonal boron nitride, and tungsten disulfide. Under visible-light excitation, despite being separated by few-layer boron nitride, the graphene and tungsten disulfide exhibit clear modulation of their doping level, i.e., a change of the Fermi level in graphene as large as 120 meV and a net electron accumulation in WS2. By using a combination of micro-Raman and photoluminescence spectroscopy, we demonstrate that the modulation is originated from simultaneous manipulation of charge and/or energy transfer between each of the two adjacent layers.

12.
Small ; 16(10): e1906681, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32049437

RESUMO

As the fastest developing photovoltaic device, perovskite solar cells have achieved an extraordinary power conversion efficiency (PCE) of 25.3% under AM 1.5 illumination. However, few studies have been devoted to perovskite solar cells harvesting artificial light, owing to the great challenge in the simultaneous manipulation of bandgap-adjustable perovskite materials, corresponding matched energy band structure of carrier transport materials, and interfacial defects. Herein, through systematic morphology, composition, and energy band engineering, high-quality Cs0.05 MA0.95 PbBrx I3- x perovskite as the light absorber and Nby Ti1- y O2 (Nb:TiO2 ) as the electron transport material with an ideal energy band alignment are obtained simultaneously. The theoretical-limit-approaching record PCEs of 36.3% (average: 34.0 ± 1.2%) under light-emitting diode (LED, warm white) and 33.2% under fluorescent lamp (cold white) are achieved simultaneously, as well as a PCE of 19.5% (average: 18.9 ± 0.3%) under solar illumination. An integrated energy conversion and storage system based on an artificial light response solar cell and sodium-ion battery is established for diverse practical applications, including a portable calculator, quartz clock, and even environmental monitoring equipment. Over a week of stable operation shows its great practical potential and provides a new avenue to promote the commercialization of perovskite photovoltaic devices via integration with ingenious electronic devices.

13.
Nano Lett ; 19(7): 4627-4633, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31188617

RESUMO

Identification and control of topological phases in topological thin films offer great opportunities for fundamental research and the fabrication of topology-based devices. Here, combining molecular beam epitaxy, angle-resolved photoemission spectroscopy, and ab initio calculations, we investigate the electronic structure evolution in (Bi1-xInx)2Se3 films (0 ≤ x ≤ 1) with thickness from 2 to 13 quintuple layers. By employing both thickness and In substitution as two independent "knobs" to control the gap change, we identify the evolution between several topological phases, i.e., dimensional crossover from a three-dimensional topological insulator to its two-dimensional counterpart with gapped surface state, and topological phase transition from a topological insulator to a normal semiconductor with increasing In concentration. Furthermore, by introducing In substitution, we experimentally demonstrated the trivial topological nature of Bi2Se3 thin films (below 6 quintuple layers) as two-dimensional gapped systems, consistent with our theoretical calculations. Our results provide not only a comprehensive phase diagram of (Bi1-xInx)2Se3 and a route to control its phase evolution but also a practical way to experimentally determine the topological properties of a gapped compound by a topological phase transition and band gap engineering.

14.
J Comput Chem ; 40(18): 1693-1700, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30889285

RESUMO

Identifying strategies for beneficial band engineering is crucial for the optimization of thermoelectric (TE) materials. In this study, we demonstrate the beneficial effects of ionic dopants on n-type Mg3 Sb2 . Using the band-resolved projected crystal orbital Hamilton population, the covalent characters of the bonding between Mg atoms at different sites are observed. By partially substituting the Mg at the octahedral sites with more ionic dopants, such as Ca and Yb, the conduction band minimum (CBM) of Mg3 Sb2 is altered to be more anisotropic with an enhanced band degeneracy of 7. The CBM density of states of doped Mg3 Sb2 with these dopants is significantly enlarged by band engineering. The improved Seebeck coefficients and power factors, together with the reduced lattice thermal conductivities, imply that the partial introduction of more ionic dopants in Mg3 Sb2 is a general solution for its n-type TE performance. © 2019 Wiley Periodicals, Inc.

15.
Chemphyschem ; 20(17): 2155-2161, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31332925

RESUMO

Single-crystal SnO2 nanorods were grown on rutile TiO2 with a heteroepitaxial relation of SnO2 {001}/TiO2 {001} (SnO2 -NR#TiO2 ) by a hydrothermal reaction. Resulting compressive lattice strain in the SnO2 -NR near the interface induces a continuous increase in the a-axis length extending over 60 nm to relax towards the [001] direction from the root to the tip. UV-light irradiation of the robust SnO2 -NR#TiO2 stably progresses the selective oxidation of ethanol to acetaldehyde with an external quantum yield of 25.6 % at excitation wavelength (λex )=365 nm under ambient temperature and pressure. Spectroscopic analyses and density functional theory simulation results suggested that the extremely high photocatalytic activity stems from the smooth interfacial electron transfer from TiO2 to SnO2 -NR through the high-quality junction and subsequent efficient charge separation due to the lattice strain-induced unidirectional potential gradient of the conduction band minimum in the SnO2 -NR.

16.
Proc Natl Acad Sci U S A ; 113(29): E4125-32, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27385824

RESUMO

Complex Zintl phases, especially antimony (Sb)-based YbZn0.4Cd1.6Sb2 with figure-of-merit (ZT) of ∼1.2 at 700 K, are good candidates as thermoelectric materials because of their intrinsic "electron-crystal, phonon-glass" nature. Here, we report the rarely studied p-type bismuth (Bi)-based Zintl phases (Ca,Yb,Eu)Mg2Bi2 with a record thermoelectric performance. Phase-pure EuMg2Bi2 is successfully prepared with suppressed bipolar effect to reach ZT ∼ 1. Further partial substitution of Eu by Ca and Yb enhanced ZT to ∼1.3 for Eu0.2Yb0.2Ca0.6Mg2Bi2 at 873 K. Density-functional theory (DFT) simulation indicates the alloying has no effect on the valence band, but does affect the conduction band. Such band engineering results in good p-type thermoelectric properties with high carrier mobility. Using transmission electron microscopy, various types of strains are observed and are believed to be due to atomic mass and size fluctuations. Point defects, strain, dislocations, and nanostructures jointly contribute to phonon scattering, confirmed by the semiclassical theoretical calculations based on a modified Debye-Callaway model of lattice thermal conductivity. This work indicates Bi-based (Ca,Yb,Eu)Mg2Bi2 is better than the Sb-based Zintl phases.

17.
J Comput Chem ; 39(31): 2582-2588, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30431662

RESUMO

Metal organic coordination polymers (MOCPs) provide an intriguing platform to design functional thermoelectric materials through modifying metal atoms, organic ligands, etc. Based on density functional theory (DFT) coupled with Boltzmann transport theory, the thermoelectric properties of several MOCPs, which is designed by intercalating organic linkers ranging from benzene to pentacene between two inorganic units, have been investigated. We found that the interplay of d orbital of Ni atom and π orbitals of the organic linkers play an important role in band engineering and then thermoelectric efficiency. Combining the high conductivity for π orbitals of organic ligands and high Seebeck coefficient of the d orbital of Ni atom, such intercalated MOCPs provide new way to design high performance thermoelectric materials. © 2018 Wiley Periodicals, Inc.

18.
Nano Lett ; 17(2): 721-727, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28173706

RESUMO

Majorana zero modes (MZMs), prime candidates for topological quantum bits, are detected as zero bias conductance peaks (ZBPs) in tunneling spectroscopy measurements. Implementation of a narrow and high tunnel barrier in the next generation of Majorana devices can help to achieve the theoretically predicted quantized height of the ZBP. We propose a material-oriented approach to engineer a sharp and narrow tunnel barrier by synthesizing a thin axial segment of GaxIn1-xSb within an InSb nanowire. By varying the precursor molar fraction and the growth time, we accurately control the composition and the length of the barriers. The height and the width of the GaxIn1-xSb tunnel barrier are extracted from the Wentzel-Kramers-Brillouin (WKB) fits to the experimental I-V traces.

19.
Nano Lett ; 15(1): 281-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25539134

RESUMO

Cutting-edge research in the band engineering of nanowires at the ultimate fine scale is related to the minimum scale of nanowire-based devices. The fundamental issue at the subnanometer scale is whether angle-resolved photoemission spectroscopy (ARPES) can be used to directly measure the momentum-resolved electronic structure of a single wire because of the difficulty associated with assembling single wire into an ordered array for such measurements. Here, we demonstrated that the one-dimensional (1D) confinement of electrons, which are transferred from external dopants, within a single subnanometer-scale wire (subnanowire) could be directly measured using ARPES. Convincing evidence of 1D electron confinement was obtained using two different gold subnanowires with characteristic single metallic bands that were alternately and spontaneously ordered on a stepped silicon template, Si(553). Noble metal atoms were adsorbed at room temperature onto the gold subnanowires while the overall structure of the wires was maintained. Only one type of gold subnanowire could be controlled using external noble metal dopants without transforming the metallic band of the other type of gold subnanowires. This result was confirmed by scanning tunnelling microscopy experiments and first-principles calculations. The selective control clearly showed that externally doped electrons could be confined within a single gold subnanowire. This experimental evidence was used to further investigate the effects of the disorder induced by external dopants on a single subnanowire using ARPES.

20.
Nano Lett ; 15(11): 7574-80, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26492362

RESUMO

The performances of heterojunction-based electronic devices are extremely sensitive to the interfacial electronic band structure. Here we report a largely enhanced performance of photoelectrochemical (PEC) photoanodes by ferroelectric polarization-endowed band engineering on the basis of TiO2/BaTiO3 core/shell nanowires (NWs). Through a one-step hydrothermal process, a uniform, epitaxial, and spontaneously poled barium titanate (BTO) layer was created on single crystalline TiO2 NWs. Compared to pristine TiO2 NWs, the 5 nm BTO-coated TiO2 NWs achieved 67% photocurrent density enhancement. By numerically calculating the potential distribution across the TiO2/BTO/electrolyte heterojunction and systematically investigating the light absorption, charge injection and separation properties of TiO2 and TiO2/BTO NWs, the PEC performance gain was proved to be a result of the increased charge separation efficiency induced by the ferroelectric polarization of the BTO shell. The ferroelectric polarization could be switched by external electric field poling and yielded PEC performance gain or loss based on the direction of the polarization. This study evidence that the piezotronic effect (ferroelectric or piezoelectric potential-induced band structure engineering) holds great promises in improving the performance of PEC photoelectrodes in addition to chemistry and structure optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA