Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2308762120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669394

RESUMO

The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) are involved in the regulation of defensive behavior under threat, but their engagement in flexible behavior shifts remains unclear. Here, we report the oscillatory activities of mPFC-BLA circuit in reaction to a naturalistic threat, created by a predatory robot in mice. Specifically, we found dynamic frequency tuning among two different theta rhythms (~5 or ~10 Hz) was accompanied by agile changes of two different defensive behaviors (freeze-or-flight). By analyzing flight trajectories, we also found that high beta (~30 Hz) is engaged in the top-down process for goal-directed flights and accompanied by a reduction in fast gamma (60 to 120 Hz, peak near 70 Hz). The elevated beta nested the fast gamma activity by its phase more strongly. Our results suggest that the mPFC-BLA circuit has a potential role in oscillatory gear shifting allowing flexible information routing for behavior switches.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Animais , Camundongos , Córtex Pré-Frontal , Citoplasma , Raios gama
2.
J Neurosci ; 43(30): 5537-5545, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37344235

RESUMO

Hierarchical predictive coding networks are a general model of sensory processing in the brain. Under neural delays, these networks have been suggested to naturally generate oscillatory activity in approximately the α frequency range (∼8-12 Hz). This suggests that α oscillations, a prominent feature of EEG recordings, may be a spectral "fingerprint" of predictive sensory processing. Here, we probed this possibility by investigating whether oscillations over the visual cortex predictively encode visual information. Specifically, we examined whether their power carries information about the position of a moving stimulus, in a temporally predictive fashion. In two experiments (N = 32, 18 female; N = 34, 17 female), participants viewed an apparent-motion stimulus moving along a circular path while EEG was recorded. To investigate the encoding of stimulus-position information, we developed a method of deriving probabilistic spatial maps from oscillatory power estimates. With this method, we demonstrate that it is possible to reconstruct the trajectory of a moving stimulus from α/low-ß oscillations, tracking its position even across unexpected motion reversals. We also show that future position representations are activated in the absence of direct visual input, demonstrating that temporally predictive mechanisms manifest in α/ß band oscillations. In a second experiment, we replicate these findings and show that the encoding of information in this range is not driven by visual entrainment. By demonstrating that occipital α/ß oscillations carry stimulus-related information, in a temporally predictive fashion, we provide empirical evidence of these rhythms as a spectral "fingerprint" of hierarchical predictive processing in the human visual system.SIGNIFICANCE STATEMENT "Hierarchical predictive coding" is a general model of sensory information processing in the brain. When in silico predictive coding models are constrained by neural transmission delays, their activity naturally oscillates in roughly the α range (∼8-12 Hz). Using time-resolved EEG decoding, we show that neural rhythms in this approximate range (α/low-ß) over the human visual cortex predictively encode the position of a moving stimulus. From the amplitude of these oscillations, we are able to reconstruct the stimulus' trajectory, revealing signatures of temporally predictive processing. This provides direct neural evidence linking occipital α/ß rhythms to predictive visual processing, supporting the emerging view of such oscillations as a potential spectral "fingerprint" of hierarchical predictive processing in the human visual system.


Assuntos
Ritmo alfa , Córtex Visual , Humanos , Feminino , Percepção Visual , Encéfalo , Sensação , Eletroencefalografia
3.
J Neurosci ; 43(37): 6369-6383, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37550053

RESUMO

To form a perceptual decision, the brain must acquire samples of evidence from the environment and incorporate them in computations that mediate choice behavior. While much is known about the neural circuits that process sensory information and those that form decisions, less is known about the mechanisms that establish the functional linkage between them. We trained monkeys of both sexes to make difficult decisions about the net direction of visual motion under conditions that required trial-by-trial control of functional connectivity. In one condition, the motion appeared at different locations on different trials. In the other, two motion patches appeared, only one of which was informative. Neurons in the parietal cortex produced brief oscillations in their firing rate at the time routing was established: upon onset of the motion display when its location was unpredictable across trials, and upon onset of an attention cue that indicated in which of two locations an informative patch of dots would appear. The oscillation was absent when the stimulus location was fixed across trials. We interpret the oscillation as a manifestation of the mechanism that establishes the source and destination of flexibly routed information, but not the transmission of the information per se Significance Statement It has often been suggested that oscillations in neural activity might serve a role in routing information appropriately. We observe an oscillation in neural firing rate in the lateral intraparietal area consistent with such a role. The oscillations are transient. They coincide with the establishment of routing, but they do not appear to play a role in the transmission (or conveyance) of the routed information itself.


Assuntos
Percepção de Movimento , Neurônios , Masculino , Feminino , Animais , Neurônios/fisiologia , Atenção/fisiologia , Lobo Parietal/fisiologia , Comportamento de Escolha , Percepção de Movimento/fisiologia , Estimulação Luminosa
4.
J Neurosci ; 43(17): 3107-3119, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36931709

RESUMO

Both passive tactile stimulation and motor actions result in dynamic changes in beta band (15-30 Hz Hz) oscillations over somatosensory cortex. Similar to alpha band (8-12 Hz) power decrease in the visual system, beta band power also decreases following stimulation of the somatosensory system. This relative suppression of α and ß oscillations is generally interpreted as an increase in cortical excitability. Here, next to traditional single-pulse stimuli, we used a random intensity continuous right index finger tactile stimulation (white noise), which enabled us to uncover an impulse response function of the somatosensory system. Contrary to previous findings, we demonstrate a burst-like initial increase rather than decrease of beta activity following white noise stimulation (human participants, N = 18, 8 female). These ß bursts, on average, lasted for 3 cycles, and their frequency was correlated with resonant frequency of somatosensory cortex, as measured by a multifrequency steady-state somatosensory evoked potential paradigm. Furthermore, beta band bursts shared spectro-temporal characteristics with evoked and resting-state ß oscillations. Together, our findings not only reveal a novel oscillatory signature of somatosensory processing that mimics the previously reported visual impulse response functions, but also point to a common oscillatory generator underlying spontaneous ß bursts in the absence of tactile stimulation and phase-locked ß bursts following stimulation, the frequency of which is determined by the resonance properties of the somatosensory system.SIGNIFICANCE STATEMENT The investigation of the transient nature of oscillations has gained great popularity in recent years. The findings of bursting activity, rather than sustained oscillations in the beta band, have provided important insights into its role in movement planning, working memory, inhibition, and reactivation of neural ensembles. In this study, we show that also in response to tactile stimulation the somatosensory system responds with ∼3 cycle oscillatory beta band bursts, whose spectro-temporal characteristics are shared with evoked and resting-state beta band oscillatory signatures of the somatosensory system. As similar bursts have been observed in the visual domain, these oscillatory signatures might reflect an important supramodal mechanism in sensory processing.


Assuntos
Ritmo beta , Tato , Humanos , Feminino , Tato/fisiologia , Ritmo beta/fisiologia , Ruído , Córtex Somatossensorial/fisiologia
5.
Neuroimage ; 290: 120572, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490584

RESUMO

Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Motor/fisiologia , Inibição Psicológica , Ritmo beta/fisiologia , Transmissão Sináptica
6.
Neuroimage ; 296: 120686, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871037

RESUMO

Centromedian nucleus (CM) is one of several intralaminar nuclei of the thalamus and is thought to be involved in consciousness, arousal, and attention. CM has been suggested to play a key role in the control of attention, by regulating the flow of information to different brain regions such as the ascending reticular system, basal ganglia, and cortex. While the neurophysiology of attention in visual and auditory systems has been studied in animal models, combined single unit and LFP recordings in human have not, to our knowledge, been reported. Here, we recorded neuronal activity in the CM nucleus in 11 patients prior to insertion of deep brain stimulation electrodes for the treatment of epilepsy while subjects performed an auditory attention task. Patients were requested to attend and count the infrequent (p = 0.2) odd or "deviant" tones, ignore the frequent standard tones and report the total number of deviant tones at trial completion. Spikes were discriminated, and LFPs were band pass filtered (5-45 Hz). Average peri­stimulus time histograms and spectra were constructed by aligning on tone onsets and statistically compared. The firing rate of CM neurons showed selective, multi-phasic responses to deviant tones in 81% of the tested neurons. Local field potential analysis showed selective beta and low gamma (13-45 Hz) modulations in response to deviant tones, also in a multi-phasic pattern. The current study demonstrates that CM neurons are under top-down control and participate in the selective processing during auditory attention and working memory. These results, taken together, implicate the CM in selective auditory attention and working memory and support a role of beta and low gamma oscillatory activity in cognitive processes. It also has potential implications for DBS therapy for epilepsy and non-motor symptoms of PD, such as apathy and other disorders of attention.


Assuntos
Atenção , Percepção Auditiva , Núcleos Intralaminares do Tálamo , Memória de Curto Prazo , Neurônios , Humanos , Atenção/fisiologia , Masculino , Feminino , Memória de Curto Prazo/fisiologia , Adulto , Percepção Auditiva/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Pessoa de Meia-Idade , Neurônios/fisiologia , Adulto Jovem , Estimulação Acústica , Estimulação Encefálica Profunda/métodos
7.
Neurobiol Dis ; 201: 106652, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209070

RESUMO

Defining spatial synchronisation of pathological beta oscillations is important, given that many theories linking them to parkinsonian symptoms propose a reduction in the dimensionality of the coding space within and/or across cortico-basal ganglia structures. Such spatial synchronisation could arise from a single process, with widespread entrainment of neurons to the same oscillation. Alternatively, the partially segregated structure of cortico-basal ganglia loops could provide a substrate for multiple ensembles that are independently synchronized at beta frequencies. Addressing this question requires an analytical approach that identifies groups of signals with a statistical tendency for beta synchronisation, which is unachievable using standard pairwise measures. Here, we utilized such an approach on multichannel recordings of background unit activity (BUA) in the external globus pallidus (GP) and subthalamic nucleus (STN) in parkinsonian rats. We employed an adapted version of a principle and independent component analysis-based method commonly used to define assemblies of single neurons (i.e., neurons that are synchronized over short timescales). This analysis enabled us to define whether changes in the power of beta oscillations in local ensembles of neurons (i.e., the BUA recorded from single contacts) consistently covaried over time, forming a "beta ensemble". Multiple beta ensembles were often present in single recordings and could span brain structures. Membership of a beta ensemble predicted significantly higher levels of short latency (<5 ms) synchrony in the raw BUA signal and phase synchronisation with cortical beta oscillations, suggesting that they comprised clusters of neurons that are functionally connected at multiple levels, despite sometimes being non-contiguous in space. Overall, these findings suggest that beta oscillations do not comprise of a single synchronisation process, but rather multiple independent activities that can bind both spatially contiguous and non-contiguous pools of neurons within and across structures. As previously proposed, such ensembles provide a substrate for beta oscillations to constrain the coding space of cortico-basal ganglia circuits.

8.
Neurobiol Dis ; 201: 106689, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366457

RESUMO

Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.

9.
Neurobiol Dis ; 197: 106529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740349

RESUMO

Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.


Assuntos
Ritmo beta , Sincronização Cortical , Estimulação Encefálica Profunda , Dedos , Levodopa , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estimulação Encefálica Profunda/métodos , Idoso , Ritmo beta/fisiologia , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Sincronização Cortical/fisiologia , Levodopa/uso terapêutico , Núcleo Subtalâmico/fisiopatologia , Antiparkinsonianos/uso terapêutico , Eletroencefalografia
10.
Cogn Affect Behav Neurosci ; 24(5): 839-859, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147929

RESUMO

The value associated with reward is sensitive to external factors, such as the time between the choice and reward delivery as classically manipulated in temporal discounting tasks. Subjective preference for two reward options is dependent on objective variables of reward magnitude and reward delay. Single neuron correlates of reward value have been observed in regions, including ventral striatum, orbital, and medial prefrontal cortex. Brain imaging studies show cortico-striatal-limbic network activity related to subjective preferences. To explore how oscillatory dynamics represent reward processing across brain regions, we measured local field potentials of rats performing a temporal discounting task. Our goal was to use a data-driven approach to identify an electrophysiological marker that correlates with reward preference. We found that reward-locked oscillations at beta frequencies signaled the magnitude of reward and decayed with longer temporal delays. Electrodes in orbitofrontal/medial prefrontal cortex, anterior insula, ventral striatum, and amygdala individually increased power and were functionally connected at beta frequencies during reward outcome. Beta power during reward outcome correlated with subjective value as defined by a computational model fit to the discounting behavior. These data suggest that cortico-striatal beta oscillations are a reward signal correlated, which may represent subjective value and hold potential to serve as a biomarker and potential therapeutic target.


Assuntos
Ritmo beta , Recompensa , Animais , Masculino , Ritmo beta/fisiologia , Ratos , Desvalorização pelo Atraso/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Corpo Estriado/fisiologia , Corpo Estriado/diagnóstico por imagem , Estriado Ventral/fisiologia , Estriado Ventral/diagnóstico por imagem , Ratos Long-Evans
11.
Brain Cogn ; 178: 106177, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749353

RESUMO

Numerous studies have explored the concept of social dominance and its implications for leadership within the behavioral and cognitive sciences in recent years. The current study aims to address the gap regarding the neural correlates of social dominance by investigating the associations between psychological measures of social dominance and neural features among a sample of leaders. Thirty healthy male volunteers engaged in a monetary gambling task while their resting-state and task-based electroencephalography data were recorded. The results revealed a positive association between social dominance and resting-state beta oscillations in central electrodes. Furthermore, a negative association was observed between social dominance and task-based reaction time as well as the amplitude of the feedback-related negativity component of the event-related potentials during the gain, but not the loss condition. These findings suggest that social dominance is associated with enhanced reward processing which has implications for social and interpersonal interactions.


Assuntos
Eletroencefalografia , Potenciais Evocados , Predomínio Social , Humanos , Masculino , Eletroencefalografia/métodos , Adulto Jovem , Potenciais Evocados/fisiologia , Adulto , Encéfalo/fisiologia , Recompensa , Tempo de Reação/fisiologia , Ritmo beta/fisiologia , Jogo de Azar
12.
Cereb Cortex ; 33(11): 6834-6851, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36682885

RESUMO

Listeners predict upcoming information during language comprehension. However, how this ability is implemented is still largely unknown. Here, we tested the hypothesis proposing that language production mechanisms have a role in prediction. We studied 2 electroencephalographic correlates of predictability during speech comprehension-pre-target alpha-beta (8-30 Hz) power decrease and the post-target N400 event-related potential effect-in a population with impaired speech-motor control, i.e. adults who stutter (AWS), compared to typically fluent adults (TFA). Participants listened to sentences that could either constrain towards a target word or not, modulating its predictability. As a complementary task, participants also performed context-driven word production. Compared to TFA, AWS not only displayed atypical neural responses in production, but, critically, they showed a different pattern also in comprehension. Specifically, while TFA showed the expected pre-target power decrease, AWS showed a power increase in frontal regions, associated with speech-motor control. In addition, the post-target N400 effect was reduced for AWS with respect to TFA. Finally, we found that production and comprehension power changes were positively correlated in TFA, but not in AWS. Overall, the results support the idea that processes and neural structures prominently devoted to speech planning also support prediction during speech comprehension.


Assuntos
Fala , Gagueira , Adulto , Humanos , Masculino , Feminino , Fala/fisiologia , Compreensão , Eletroencefalografia , Potenciais Evocados
13.
Cereb Cortex ; 33(5): 1876-1894, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35639957

RESUMO

It is largely unknown how attention adapts to the timing of acoustic stimuli. To address this, we investigated how hemispheric lateralization of alpha (7-13 Hz) and beta (14-24 Hz) oscillations, reflecting voluntary allocation of auditory spatial attention, is influenced by tempo and predictability of sounds. We recorded electroencephalography while healthy adults listened to rhythmic sound streams with different tempos that were presented dichotically to separate ears, thus permitting manipulation of spatial-temporal attention. Participants responded to stimulus-onset-asynchrony (SOA) deviants (-90 ms) for given tones in the attended rhythm. Rhythm predictability was controlled via the probability of SOA deviants per block. First, the results revealed hemispheric lateralization of beta-power according to attention direction, reflected as ipsilateral enhancement and contralateral suppression, which was amplified in high- relative to low-predictability conditions. Second, fluctuations in the time-resolved beta-lateralization aligned more strongly with the attended than the unattended tempo. Finally, a trend-level association was found between the degree of beta-lateralization and improved ability to distinguish between SOA-deviants in the attended versus unattended ear. Differently from previous studies, we presented continuous rhythms in which task-relevant and irrelevant stimuli had different tempo, thereby demonstrating that temporal alignment of beta-lateralization with attended sounds reflects top-down attention to sound timing.


Assuntos
Percepção Auditiva , Eletroencefalografia , Adulto , Humanos , Eletroencefalografia/métodos , Estimulação Acústica , Som
14.
Neurol Sci ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096396

RESUMO

BACKGROUND: The blink reflex excitability, assessed through paired electrical stimuli responses, has been modulated using traditional non-invasive neurostimulation techniques. Recently, transcranial Alternating Current Stimulation (tACS) emerged as a tool to modulate brain oscillations implicated in various motor, perceptual, and cognitive functions. This study aims to investigate the influence of 20-Hz and 10-Hz tACS sessions on the primary motor cortex and their impact on blink reflex excitability. MATERIALS AND METHODS: Fifteen healthy volunteers underwent 10-min tACS sessions (intensity 1 mA) with active/reference electrodes placed over C4/Pz, delivering 20-Hz, 10-Hz, and sham stimulation. The blink reflex recovery cycle (BRrc) was assessed using the R2 amplitude ratio at various interstimulus intervals (ISIs) before (T0), immediately after (T1), and 30 min post-tACS (T2). RESULTS: Both 10-Hz and 20-Hz tACS sessions significantly increased R2 ratio at T1 (10-Hz: p = 0.02; 20-Hz: p < 0.001) and T2 (10-Hz: p = 0.01; 20-Hz: p < 0.001) compared to baseline (T0). Notably, 20-Hz tACS induced a significantly greater increase in blink reflex excitability compared to sham at both T1 (p = 0.04) and T2 (p < 0.001). CONCLUSION: This study demonstrates the modulatory effect of tACS on trigemino-facial reflex circuits, with a lasting impact on BRrc. Beta-band frequency tACS exhibited a more pronounced effect than alpha-band frequency, highlighting the influential role of beta-band oscillations in the motor cortex on blink reflex excitability modulation.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39214911

RESUMO

PURPOSE: Pregnant women are particularly vulnerable to experiencing mental health difficulties, especially anxiety. Anxiety in pregnancy can be characterized as having two components: general symptomology experienced in the general population, and pregnancy-related anxiety more focused on pregnancy, delivery, and the future child. In addition, women also commonly report experiencing attentional control and self-regulation difficulties across the peripartum period. However, links between anxiety and neural and cognitive functioning in pregnancy remain unclear. The present study investigated whether anxiety is associated with neural markers of attention and self-regulation measured using electroencephalography (EEG). Specifically, we examined associations between general and pregnancy-related anxiety and (1) beta oscillations, a neural marker of attentional processing; and (2) the coupling of beta and delta oscillations, a neural marker of self-regulation, in frontal and prefrontal regions. METHODS: A sample of 135 women in the third trimester of their pregnancy completed a resting-state EEG session. RESULTS: General anxiety was associated with increased beta oscillations, in line with research in the general population, interpreted as reflecting hyperarousal. Pregnancy-related anxiety was associated with decreased beta oscillations, interpreted as reflecting inattention and mind-wandering. Moreover, pregnancy-related anxiety, but not general anxiety, was linked to stronger delta-beta coupling, suggesting anxiety specifically related to the pregnancy is associated with investing greater effort in self-regulation. CONCLUSION: Our results suggest that general and pregnancy-related anxiety may differentially relate to neural patterns underlying attention and self-regulation in pregnancy.

16.
J Integr Neurosci ; 23(6): 114, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38940083

RESUMO

Deep brain stimulation (DBS) is a common therapy for managing Parkinson's disease (PD) in clinical practice. However, a complete understanding of its mode of action is still needed. DBS is believed to work primarily through electrical and neurochemical pathways. Furthermore, DBS has other mechanisms of action. This review explores the fundamental concepts and applications of DBS in treating PD, including its mechanisms, clinical implications, and recent research.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Humanos , Encéfalo/fisiopatologia , Animais
17.
J Physiol ; 601(16): 3605-3630, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434507

RESUMO

Cognitive processing relies on the functional refinement of the limbic circuitry during the first two weeks of life. During this developmental period, when the auditory, somatosensory and visual systems are still largely immature, the sense of olfaction acts as 'door to the world', providing an important source of environmental inputs. However, it is unknown whether early olfactory processing shapes the activity in the limbic circuitry during neonatal development. Here, we address this question by combining simultaneous in vivo recordings from the olfactory bulb (OB), lateral entorhinal cortex (LEC), hippocampus (HP) and prefrontal cortex (PFC) with olfactory stimulation as well as opto- and chemogenetic manipulations of mitral/tufted cells in the OB of non-anaesthetized neonatal mice of both sexes. We show that the neonatal OB synchronizes the limbic circuity in the beta frequency range. Moreover, it drives neuronal and network activity in LEC, as well as subsequently, HP and PFC via long-range projections from mitral cells to HP-projecting LEC neurons. Thus, OB activity shapes the communication within limbic circuits during neonatal development. KEY POINTS: During early postnatal development, oscillatory activity in the olfactory bulb synchronizes the limbic circuit. Olfactory stimulation boosts firing and beta synchronization along the olfactory bulb-lateral entorhinal cortex-hippocampal-prefrontal pathway. Mitral cells drive neuronal and network activity in the lateral entorhinal cortex (LEC), as well as subsequently, the hippocampus (HP) and the prefrontal cortex (PFC) via long-range projections from mitral cells to HP-projecting LEC neurons. Inhibition of vesicle release on LEC targeting mitral cell axons reveals direct involvement of LEC in the olfactory bulb-driven oscillatory entrainment of the limbic circuitry.


Assuntos
Bulbo Olfatório , Olfato , Camundongos , Animais , Masculino , Feminino , Olfato/fisiologia , Bulbo Olfatório/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo , Neurônios/fisiologia
18.
Neuroimage ; 269: 119891, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706940

RESUMO

The ratio between the input and output of neuronal populations, usually referred to as gain modulation, is rhythmically modulated along the oscillatory cycle. Previous research on spinal neurons, however, revealed contradictory findings: both uni- and bimodal patterns of increased responsiveness for synaptic input have been proposed for the oscillatory beta rhythm. In this study, we compared previous approaches of phase estimation directly on simulated data and empirically tested the corresponding predictions in healthy males and females. We applied single-pulse transcranial magnetic stimulation over the primary motor cortex at rest, and assessed the spinal output generated by this input. Specifically, the peak-to-peak amplitude of the motor evoked potential in the contralateral forearm was estimated as a function of the EMG phase at which the stimulus was applied. The findings indicated that human spinal neurons adhere to a unimodal pattern of increased responsiveness, and suggest that the rising phase of the upper beta band maximizes gain modulation. Importantly, a bimodal pattern of increased responsiveness was shown to result in an artifact during data analysis and filtering. This observation of invalid preprocessing could be generalized to other frequency bands (i.e., delta, theta, alpha, and gamma), different task conditions (i.e., voluntary muscle contraction), and EEG-based phase estimations. Appropriate analysis algorithms, such as broad-band filtering, enable us to accurately determine gain modulation of neuronal populations and to avoid erroneous phase estimations. This may facilitate novel phase-specific interventions for targeted neuromodulation.


Assuntos
Córtex Motor , Tratos Piramidais , Masculino , Feminino , Humanos , Tratos Piramidais/fisiologia , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana , Ritmo beta/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia
19.
J Neurophysiol ; 130(5): 1367-1372, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877188

RESUMO

Rhythmic cortical activity is thought to underlie many cognitive functions including the flexible weighting of sensory information depending on the current behavioral context. Here, we tested for potential oscillatory alignment and power modulation at behaviorally relevant frequencies in magnetoencephalography (MEG) data acquired during a virtual reality-based, rhythmic hand-target phase matching task. The task contained conditions differing in terms of visuomotor incongruence and whether or not behavior (grasping movements) had to be adapted to keep vision aligned with the target. We tested for potential oscillatory alignment with movement frequencies and cross-frequency coupling with oscillations in the alpha, beta, and gamma bands. Our results revealed local peaks at 1 Hz power, corresponding to the frequency at which hand movements alternated between open and close; thus, potentially indicating an "entrainment" of neural oscillations at key movement frequencies. We found 1 Hz power was selectively enhanced when participants needed to align incongruent vision with the target. Moreover, the phase of the "movement-entrained" 1 Hz oscillations coupled significantly with the momentary amplitude of beta band oscillations-again, this coupling was selectively enhanced when incongruent vision was task relevant. We propose that this reflected a top-down mechanism, most likely related to selective attention and rhythmic sensory sampling. Thus, phasic low-frequency (beta) power suppression likely indicated a variable (attentional) sampling of visual movement feedback; i.e., related to increased sensitivity for visually matching alternating hand movements to a phasic target at ecologically important time points, rather than continually during the grasping cycle.NEW & NOTEWORTHY Our results reveal an increased spectral power at movement frequencies in a rhythmic hand-target phase matching task under visuomotor conflict; this effect was strongest when incongruent visual movement feedback was required to guide action. Moreover, the phase of these slow frequencies coupled with the momentary power beta oscillations; again, this coupling was selectively strengthened when incongruent vision was task relevant.


Assuntos
Magnetoencefalografia , Visão Ocular , Humanos , Magnetoencefalografia/métodos , Mãos , Extremidade Superior , Movimento
20.
Neurobiol Dis ; 182: 106137, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120094

RESUMO

Patients with Parkinson's disease (PD) show impaired short-term potentiation (STP) mechanisms in the primary motor cortex (M1). However, the role played by this neurophysiological abnormality in bradykinesia pathophysiology is unknown. In this study, we used a multimodal neuromodulation approach to test whether defective STP contributes to bradykinesia. We evaluated STP by measuring motor-evoked potential facilitation during 5 Hz-repetitive transcranial magnetic stimulation (rTMS) and assessed repetitive finger tapping movements through kinematic techniques. Also, we used transcranial alternating current stimulation (tACS) to drive M1 oscillations and experimentally modulate bradykinesia. STP was assessed during tACS delivered at beta (ß) and gamma (γ) frequency, and during sham-tACS. Data were compared to those recorded in a group of healthy subjects. In PD, we found that STP was impaired during sham- and γ-tACS, while it was restored during ß-tACS. Importantly, the degree of STP impairment was associated with the severity of movement slowness and amplitude reduction. Moreover, ß-tACS-related improvements in STP were linked to changes in movement slowness and intracortical GABA-A-ergic inhibition during stimulation, as assessed by short-interval intracortical inhibition (SICI). Patients with prominent STP amelioration had greater SICI reduction (cortical disinhibition) and less slowness worsening during ß-tACS. Dopaminergic medications did not modify ß-tACS effects. These data demonstrate that abnormal STP processes are involved in bradykinesia pathophysiology and return to normal levels when ß oscillations increase. STP changes are likely mediated by modifications in GABA-A-ergic intracortical circuits and may represent a compensatory mechanism against ß-induced bradykinesia in PD.


Assuntos
Córtex Motor , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Hipocinesia/etiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA