RESUMO
Morphogen gradients provide essential positional information to gene networks through their spatially heterogeneous distribution, yet how they form is still hotly contested, with multiple models proposed for different systems. Here, we focus on the transcription factor Bicoid (Bcd), a morphogen that forms an exponential gradient across the anterior-posterior (AP) axis of the early Drosophila embryo. Using fluorescence correlation spectroscopy we find there are spatial differences in Bcd diffusivity along the AP axis, with Bcd diffusing more rapidly in the posterior. We establish that such spatially varying differences in Bcd dynamics are sufficient to explain how Bcd can have a steep exponential gradient in the anterior half of the embryo and yet still have an observable fraction of Bcd near the posterior pole. In the nucleus, we demonstrate that Bcd dynamics are impacted by binding to DNA. Addition of the Bcd homeodomain to eGFP::NLS qualitatively replicates the Bcd concentration profile, suggesting this domain regulates Bcd dynamics. Our results reveal how a long-range gradient can form while retaining a steep profile through much of its range.
Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio , Animais , Padronização Corporal/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Transativadores/genética , Transativadores/metabolismoRESUMO
The K50 (lysine at amino acid position 50) homeodomain (HD) protein Orthodenticle (Otd) is critical for anterior patterning and brain and eye development in most metazoans. In Drosophila melanogaster, another K50HD protein, Bicoid (Bcd), has evolved to replace Otd's ancestral function in embryo patterning. Bcd is distributed as a long-range maternal gradient and activates transcription of a large number of target genes, including otd Otd and Bcd bind similar DNA sequences in vitro, but how their transcriptional activities are integrated to pattern anterior regions of the embryo is unknown. Here we define three major classes of enhancers that are differentially sensitive to binding and transcriptional activation by Bcd and Otd. Class 1 enhancers are initially activated by Bcd, and activation is transferred to Otd via a feed-forward relay (FFR) that involves sequential binding of the two proteins to the same DNA motif. Class 2 enhancers are activated by Bcd and maintained by an Otd-independent mechanism. Class 3 enhancers are never bound by Bcd, but Otd binds and activates them in a second wave of zygotic transcription. The specific activities of enhancers in each class are mediated by DNA motif variants preferentially bound by Bcd or Otd and the presence or absence of sites for cofactors that interact with these proteins. Our results define specific patterning roles for Bcd and Otd and provide mechanisms for coordinating the precise timing of gene expression patterns during embryonic development.
Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Transativadores/genética , Transativadores/metabolismo , Motivos de Aminoácidos , Animais , Padronização Corporal/genética , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Ligação ProteicaRESUMO
Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient "hubs" of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Padronização Corporal/fisiologia , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/ultraestrutura , Proteínas Nucleares , Ligação Proteica , Imagem Individual de Molécula , Transativadores/química , Transativadores/ultraestrutura , Fatores de Transcrição/metabolismoRESUMO
Morphogen concentration changes in space as well as over time during development. However, how these dynamics are interpreted by cells to specify fate is not well understood. Here, we focus on two morphogens: the maternal transcription factors Bicoid and Dorsal, which directly regulate target genes to pattern Drosophila embryos. The actions of these factors at enhancers has been thoroughly dissected and provides a rich platform for understanding direct input by morphogens and their changing roles over time. Importantly, Bicoid and Dorsal do not work alone; we also discuss additional inputs that work with morphogens to control spatiotemporal gene expression in embryos.
Assuntos
Padronização Corporal/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , HumanosRESUMO
Changes in regulatory networks generate materials for evolution to create phenotypic diversity. For transcription networks, multiple studies have shown that alterations in binding sites of cis-regulatory elements correlate well with the gain or loss of specific features of the body plan. Less is known about alterations in the amino acid sequences of the transcription factors (TFs) that bind these elements. Here we study the evolution of Bicoid (Bcd), a homeodomain (HD) protein that is critical for anterior embryo patterning in Drosophila. The ancestor of Bcd (AncBcd) emerged after a duplication of a Zerknullt (Zen)-like ancestral protein (AncZB) in a suborder of flies. AncBcd diverged from AncZB, gaining novel transcriptional and translational activities. We focus on the evolution of the HD of AncBcd, which binds to DNA and RNA, and is comprised of four subdomains: an N-terminal arm (NT) and three helices; H1, H2, and Recognition Helix (RH). Using chimeras of subdomains and gene rescue assays in Drosophila, we show that robust patterning activity of the Bcd HD (high frequency rescue to adulthood) is achieved only when amino acid substitutions in three separate subdomains (NT, H1, and RH) are combined. Other combinations of subdomains also yield full rescue, but with lower penetrance, suggesting alternative suboptimal activities. Our results suggest a multistep pathway for the evolution of the Bcd HD that involved intermediate HD sequences with suboptimal activities, which constrained and enabled further evolutionary changes. They also demonstrate critical epistatic forces that contribute to the robust function of a DNA-binding domain.
Assuntos
Proteínas de Drosophila/genética , Drosophila/embriologia , Evolução Molecular , Proteínas de Homeodomínio/genética , Transativadores/genética , Animais , Drosophila/genética , Epistasia Genética , Feminino , FenótipoRESUMO
Evidence in many experimental systems supports the idea that non-uniform distributions of morphogen proteins encode positional information in developing tissues. There is also strong evidence that morphogen dispersal is mediated by cytonemes and that morphogen proteins transfer from producing to receiving cells at morphogenetic synapses that form at sites of cytoneme contacts. This essay considers some implications of this mechanism and its relevance to various contexts including large single cells such as the pre-cellular Drosophila embryo and the ciliate Stentor.
Assuntos
Cilióforos/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Morfogênese/fisiologia , Proteínas de Protozoários/metabolismo , Transdução de Sinais/fisiologia , Animais , Cilióforos/citologia , Drosophila melanogaster , Embrião não Mamífero/citologiaRESUMO
The Drosophila embryo at the mid-blastula transition (MBT) concurrently experiences a receding first wave of zygotic transcription and the surge of a massive second wave. It is not well understood how genes in the first wave become turned off transcriptionally and how their precise timing may impact embryonic development. Here we perturb the timing of the shutdown of Bicoid (Bcd)-dependent hunchback (hb) transcription in the embryo through the use of a Bcd mutant that has heightened activating potency. A delayed shutdown specifically increases Bcd-activated hb levels, and this alters spatial characteristics of the patterning outcome and causes developmental defects. Our study thus documents a specific participation of maternal activator input strength in the timing of molecular events in precise accordance with MBT morphological progression.
Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Animais , Blástula/metabolismo , Padronização Corporal , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression atlas containing the levels of mRNA or protein expression of 13 core patterning genes over six time points for every cell of the blastoderm embryo. This is the first cellular resolution dataset of a genetically perturbed Drosophila embryo that captures all cells in 3D. We describe the technical developments required to build this atlas and how the method can be employed and extended by others. We also analyze this novel dataset to characterize the degree and timing of cell fate canalization in the segmentation network. We find that in two layers of this gene regulatory network, following depletion of bcd, individual cells rapidly canalize towards normal cell fates. This result supports the hypothesis that the segmentation network directly canalizes cell fate, rather than an alternative hypothesis whereby cells are initially mis-specified and later eliminated by apoptosis. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further computational modeling of canalization and gene regulation in this transcriptional network.
Assuntos
Padronização Corporal/genética , Linhagem da Célula/genética , Bases de Dados Genéticas , Drosophila melanogaster/embriologia , Redes Reguladoras de Genes/genética , Transcriptoma/genética , Animais , Proteínas de Drosophila , Proteínas de Homeodomínio , Hibridização In Situ , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Transativadores/deficiênciaRESUMO
The Drosophila blastoderm and the vertebrate neural tube are archetypal examples of morphogen-patterned tissues that create precise spatial patterns of different cell types. In both tissues, pattern formation is dependent on molecular gradients that emanate from opposite poles. Despite distinct evolutionary origins and differences in time scales, cell biology and molecular players, both tissues exhibit striking similarities in the regulatory systems that establish gene expression patterns that foreshadow the arrangement of cell types. First, signaling gradients establish initial conditions that polarize the tissue, but there is no strict correspondence between specific morphogen thresholds and boundary positions. Second, gradients initiate transcriptional networks that integrate broadly distributed activators and localized repressors to generate patterns of gene expression. Third, the correct positioning of boundaries depends on the temporal and spatial dynamics of the transcriptional networks. These similarities reveal design principles that are likely to be broadly applicable to morphogen-patterned tissues.
Assuntos
Padronização Corporal , Drosophila melanogaster/embriologia , Embrião não Mamífero/fisiologia , Animais , Blastoderma/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Modelos Teóricos , Tubo Neural/embriologia , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
In this commentary, I will review the latest findings on the Bicoid (Bcd) morphogen in Drosophila, a paradigm for gradient formation taught to biology students for more than two decades. "Seeing is believing" also summarizes the erroneous steps that were needed to elucidate the mechanisms of gradient formation and the path of movement of Bcd. Initially proclaimed as a dogma in 1988 and later incorporated into the SDD model where the broad diffusion of Bcd throughout the embryo was the predominant step leading to gradient formation, the SDD model was irrefutable for more than two decades until first doubts were raised in 2007 regarding the diffusion properties of Bcd associated with the SDD model. This led to re-thinking of the issue and the definition of a new model, termed the ARTS model which could explain most of the physical constraints that were inherently associated with the SDD model. In the ARTS model, gradient formation is mediated by the mRNA which is redistributed along cortical microtubules to form a mRNA gradient which is translated to form the protein gradient. Contrary to the SDD model, there is no Bcd diffusion from the tip. The ARTS model is also compatible with the observed cortical movement of Bcd. I will critically compare the SDD and the ARTS models as well as other models, analyze the major differences, and highlight the path where Bcd is localized during early nuclear cycles.
Assuntos
Drosophila melanogaster/genética , Proteínas de Homeodomínio/fisiologia , Transporte de RNA , Transativadores/fisiologia , Animais , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Embrião não MamíferoRESUMO
The great radiation in the infraorder Cyclorrhapha involved several morphological and molecular changes, including important changes in anterior egg development. During Drosophila oogenesis, exuperantia (exu) is critical for localizing bicoid (bcd) messenger RNA (mRNA) to the anterior region of the oocyte. Because it is phylogenetically older than bcd, which is exclusive to Cyclorrhapha, we hypothesize that exu has undergone adaptive changes to enable this new function. Although exu has been well studied in Drosophila, there is no functional or transcriptional information about it in any other Diptera. Here, we investigate exu in the South American fruit fly Anastrepha fraterculus, a Cyclorrhapha of great agricultural importance that have lost bcd, aiming to understand the evolution of exu in this infraorder. We assessed its pattern of gene expression in A. fraterculus by analyzing transcriptomes from cephalic and reproductive tissues. A combination of next-generation data with classical sequencing procedures enabled identification of the structure of exu and its alternative transcripts in this species. In addition to the sex-specific isoforms described for Drosophila, we found that not only exu is expressed in heads, but this is mediated by two transcripts with a specific 5'UTR exon-likely a result from usage of a third promoter. Furthermore, we tested the hypothesis that exu is evolving under positive selection in Cyclorrhapha after divergence from lower Diptera. We found evidence of positive selection at two important exu domains, EXO-like and SAM-like, both involved with mRNA binding during bcd mRNA localization in Drosophila, which could reflect its cooptation for the new function of bcd mRNA localization in Cyclorrhapha.
Assuntos
Dípteros/genética , Proteínas do Ovo/metabolismo , Evolução Molecular , Proteínas de Insetos/metabolismo , Adaptação Fisiológica , Animais , Dípteros/crescimento & desenvolvimento , Dípteros/fisiologia , Proteínas do Ovo/genética , Feminino , Proteínas de Insetos/genética , Masculino , Oogênese/fisiologia , Especificidade de Órgãos , Filogenia , Fatores SexuaisRESUMO
The formation of patterns that are proportional to the size of the embryo is an intriguing but poorly understood feature of development. Molecular mechanisms controlling such proportionality, or scaling, can be probed through quantitative interrogations of the properties of morphogen gradients that instruct patterning. Recent studies of the Drosophila morphogen gradient Bicoid (Bcd), which is required for anterior-posterior (AP) patterning in the early embryo, have uncovered two distinct ways of scaling. Whereas between-species scaling is achieved by adjusting the exponential shape characteristic of the Bcd gradient profile, namely, its length scale or length constant (λ), within-species scaling is achieved through adjusting the profile's amplitude, namely, the Bcd concentration at the anterior (B0). Here, we report a case in which Drosophila melanogaster embryos exhibit Bcd gradient properties uncharacteristic of their size. The embryos under investigation were from a pair of inbred lines that had been artificially selected for egg size extremes. We show that B0 in the large embryos is uncharacteristically low but λ is abnormally extended. Although the large embryos have more total bcd mRNA than their smaller counterparts, as expected, its distribution is unusually broad. We show that the large and small embryos develop gene expression patterns exhibiting boundaries that are proportional to their respective lengths. Our results suggest that the large-egg inbred line has acquired compensating properties that counteract the extreme length of the embryos to maintain Bcd gradient properties necessary for robust patterning. Our study documents, for the first time to our knowledge, a case of within-species Bcd scaling achieved through adjusting the gradient profile's exponential shape characteristic, illustrating at a molecular level how a developmental system can follow distinct operational paths towards the goal of robust and scaled patterning.
Assuntos
Padronização Corporal/genética , Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Transativadores/biossíntese , Transativadores/genéticaRESUMO
Morphogens are proteins that form concentration gradients in embryos and developing tissues, where they act as postal codes, providing cells with positional information and allowing them to behave accordingly. Bicoid was the first discovered morphogen, and remains one of the most studied. It regulates segmentation in flies, forming a striking exponential gradient along the anterior-posterior axis of early Drosophila embryos, and activating the transcription of multiple target genes in a concentration-dependent manner. In this review, the work done by us and by others to characterize the mobility of Bicoid in D. melanogaster embryos is presented. The central role played by the diffusion of Bicoid in both the establishment of the gradient and the activation of target genes is discussed, and placed in the context of the need for these processes to be all at once rapid, precise and robust. The Bicoid system, and morphogen gradients in general, remain amongst the most amazing examples of the coexistence, often observed in living systems, of small-scale disorder and large-scale spatial order. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Assuntos
Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Transcrição Gênica/fisiologia , Animais , Proteínas de Drosophila , Drosophila melanogasterRESUMO
The ubiquitin -like protein SUMO is conjugated covalently to hundreds of target proteins in organisms throughout the eukaryotic domain. Genetic and biochemical studies using the model organism Drosophila melanogaster are beginning to reveal many essential functions for SUMO in cell biology and development. For example, SUMO regulates multiple signaling pathways such as the Ras/MAPK, Dpp, and JNK pathways. In addition, SUMO regulates transcription through conjugation to many transcriptional regulatory proteins, including Bicoid, Spalt , Scm, and Groucho. In some cases, conjugation of SUMO to a target protein inhibits its normal activity, while in other cases SUMO conjugation stimulates target protein activity. SUMO often modulates a biological process by altering the subcellular localization of a target protein. The ability of SUMO and other ubiquitin-like proteins to diversify protein function may be critical to the evolution of developmental complexity.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Animais , Drosophila melanogaster/crescimento & desenvolvimentoRESUMO
How patterns are formed to scale with tissue size remains an unresolved problem. Here we investigate embryonic patterns of gap gene expression along the anterior-posterior (AP) axis in Drosophila. We use embryos that greatly differ in length and, importantly, possess distinct length-scaling characteristics of the Bicoid (Bcd) gradient. We systematically analyze the dynamic movements of gap gene expression boundaries in relation to both embryo length and Bcd input as a function of time. We document the process through which such dynamic movements drive both an emergence of a global scaling landscape and evolution of boundary-specific scaling characteristics. We show that, despite initial differences in pattern scaling characteristics that mimic those of Bcd in the anterior, such characteristics of final patterns converge. Our study thus partitions the contributions of Bcd input and regulatory dynamics inherent to the AP patterning network in shaping embryonic pattern's scaling characteristics.
RESUMO
Neural circuit function underlies cognition, sensation, and behavior. Proper circuit assembly depends on the identity of the neurons in the circuit (gene expression, morphology, synapse targeting, and biophysical properties). Neuronal identity is established by spatial and temporal patterning mechanisms, but little is known about how these mechanisms drive circuit formation in postmitotic neurons. Temporal patterning involves the sequential expression of transcription factors (TFs) in neural progenitors to diversify neuronal identity, in part through the initial expression of homeodomain TF combinations. Here, we address the role of the Drosophila temporal TF Hunchback and the homeodomain TF Bicoid in the assembly of the Pair1 (SEZ_DN1) descending neuron locomotor circuit, which promotes larval pausing and head casting. We find that both Hunchback and Bicoid are expressed in larval Pair1 neurons, Hunchback activates Bicoid in Pair1 (opposite of their embryonic relationship), and the loss of Hunchback function or Bicoid function from Pair1 leads to ectopic presynapse numbers in Pair1 axons and an increase in Pair1-induced pausing behavior. These phenotypes are highly specific, as the loss of Bicoid or Hunchback has no effect on Pair1 neurotransmitter identity, dendrite morphology, or axonal morphology. Importantly, the loss of Hunchback or Bicoid in Pair1 leads to the addition of new circuit partners that may underlie the exaggerated locomotor pausing behavior. These data are the first to show a role for Bicoid outside of embryonic patterning and the first to demonstrate a cell-autonomous role for Hunchback and Bicoid in interneuron synapse targeting and locomotor behavior.
Assuntos
Proteínas de Drosophila , Animais , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Larva/metabolismo , Neurônios/metabolismo , Sinapses/metabolismoRESUMO
Developmental patterning networks are regulated by multiple inputs and feedback connections that rapidly reshape gene expression, limiting the information that can be gained solely from slow genetic perturbations. Here we show that fast optogenetic stimuli, real-time transcriptional reporters, and a simplified genetic background can be combined to reveal the kinetics of gene expression downstream of a developmental transcription factor in vivo. We engineer light-controlled versions of the Bicoid transcription factor and study their effects on downstream gap genes in embryos. Our results recapitulate known relationships, including rapid Bicoid-dependent transcription of giant and hunchback and delayed repression of Krüppel. In addition, we find that the posterior pattern of knirps exhibits a quick but inverted response to Bicoid perturbation, suggesting a noncanonical role for Bicoid in directly suppressing knirps transcription. Acute modulation of transcription factor concentration while recording output gene activity represents a powerful approach for studying developmental gene networks in vivo.
Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Optogenética , Transativadores/metabolismoRESUMO
Spatially distributed signaling molecules, known as morphogens, provide spatial information during development. A host of different morphogens have now been identified, from subcellular gradients through to morphogens that act across a whole embryo. These gradients form over a wide-range of timescales, from seconds to hours, and their time windows for interpretation are also highly variable; the processes of morphogen gradient formation and interpretation are highly dynamic. The morphogen Bicoid (Bcd), present in the early Drosophila embryo, is essential for setting up the future Drosophila body segments. Due to its accessibility for both genetic perturbations and imaging, this system has provided key insights into how precise patterning can occur within a highly dynamic system. Here, we review the temporal scales of Bcd gradient formation and interpretation. In particular, we discuss the quantitative evidence for different models of Bcd gradient formation, outline the time windows for Bcd interpretation, and describe how Bcd temporally adapts its own ability to be interpreted. The utilization of temporal information in morphogen readout may provide crucial inputs to ensure precise spatial patterning, particularly in rapidly developing systems.
Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Proteínas de Homeodomínio/genética , Transativadores/genéticaRESUMO
An extended version of Birnbaum-Saunders distribution with five parameters is introduced. Theoretical aspects of five-parameter Birnbaum-Saunders distribution and the maximum likelihood estimation of parameters are presented. The reliability and applicability of the proposed distribution is evaluated using both simulation and real-world data namely bicoid gene expression profile. The findings of this research confirm that the newly proposed five-parameter Birnbaum-Saunders distribution can be utilized to describe the distribution of bicoid gene expression profile.
Assuntos
Expressão Gênica , Modelos Genéticos , Modelos Estatísticos , Simulação por Computador , HumanosRESUMO
Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different framework. Here, we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.
Cells in the brain, liver and skin, as well as many other organs, all contain the same DNA, yet behave in very different ways. This is because before a gene can produce its corresponding protein, it must first be transcribed into messenger RNA. As an organism grows, the transcription of certain genes is switched on or off by regulatory molecules called transcription factors, which guide cells towards a specific 'fate'. These molecules bind to specific locations within the regulatory regions of DNA, and for decades biologist have tried to use the arrangement of these sites to predict which proteins a cell will make. Theoretical models known as thermodynamic models have been able to successfully predict transcription in bacteria. However, this has proved more challenging to do in eukaryotes, such as yeast, fruit flies and humans. One of the key differences is that DNA in eukaryotes is typically tightly wound into bundles called nucleosomes, which must be disentangled in order for transcription factors to access the DNA. Previous thermodynamic models have suggested that DNA in eukaryotes randomly switches between being in a wound and unwound state. The models assume that once unwound, regulatory proteins stabilize the DNA in this form, making it easier for other transcription factors to bind to the DNA. Now, Eck, Liu et al. have tested some of these models by studying the transcription of a gene involved in the development of fruit flies. The experiments showed that no thermodynamic model could accurately mimic how this gene is regulated in the embryos of fruit flies. This led Eck, Liu et al. to identify a model that is better at predicting the activation pattern of this developmental gene. In this model, instead of just 'locking' DNA into an unwound shape, transcription factors can also actively speed up the unwinding of DNA. This improved understanding builds towards the goal of predicting gene regulation, where DNA sequences can be used to tell where and when cell decisions will be made. In the future, this could allow the development of new types of therapies that can regulate transcription in different diseases.