Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.309
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36580913

RESUMO

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Assuntos
Anticorpos Antivirais , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19 , SARS-CoV-2/classificação , SARS-CoV-2/genética
2.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32531202

RESUMO

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genoma , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Processamento de Proteína Pós-Traducional , Neoplasias Cutâneas/genética , Acetilação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Elementos Facilitadores Genéticos , Feminino , Xenoenxertos , Humanos , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Fator de Transcrição Associado à Microftalmia/química , Fator de Transcrição Associado à Microftalmia/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Peixe-Zebra
3.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960407

RESUMO

The optimization of therapeutic antibodies through traditional techniques, such as candidate screening via hybridoma or phage display, is resource-intensive and time-consuming. In recent years, computational and artificial intelligence-based methods have been actively developed to accelerate and improve the development of therapeutic antibodies. In this study, we developed an end-to-end sequence-based deep learning model, termed AttABseq, for the predictions of the antigen-antibody binding affinity changes connected with antibody mutations. AttABseq is a highly efficient and generic attention-based model by utilizing diverse antigen-antibody complex sequences as the input to predict the binding affinity changes of residue mutations. The assessment on the three benchmark datasets illustrates that AttABseq is 120% more accurate than other sequence-based models in terms of the Pearson correlation coefficient between the predicted and experimental binding affinity changes. Moreover, AttABseq also either outperforms or competes favorably with the structure-based approaches. Furthermore, AttABseq consistently demonstrates robust predictive capabilities across a diverse array of conditions, underscoring its remarkable capacity for generalization across a wide spectrum of antigen-antibody complexes. It imposes no constraints on the quantity of altered residues, rendering it particularly applicable in scenarios where crystallographic structures remain unavailable. The attention-based interpretability analysis indicates that the causal effects of point mutations on antibody-antigen binding affinity changes can be visualized at the residue level, which might assist automated antibody sequence optimization. We believe that AttABseq provides a fiercely competitive answer to therapeutic antibody optimization.


Assuntos
Complexo Antígeno-Anticorpo , Aprendizado Profundo , Complexo Antígeno-Anticorpo/química , Antígenos/química , Antígenos/genética , Antígenos/metabolismo , Antígenos/imunologia , Afinidade de Anticorpos , Sequência de Aminoácidos , Biologia Computacional/métodos , Humanos , Mutação , Anticorpos/química , Anticorpos/imunologia , Anticorpos/genética , Anticorpos/metabolismo
4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980371

RESUMO

Accurate prediction of protein-ligand binding affinity (PLA) is important for drug discovery. Recent advances in applying graph neural networks have shown great potential for PLA prediction. However, existing methods usually neglect the geometric information (i.e. bond angles), leading to difficulties in accurately distinguishing different molecular structures. In addition, these methods also pose limitations in representing the binding process of protein-ligand complexes. To address these issues, we propose a novel geometry-enhanced mid-fusion network, named GEMF, to learn comprehensive molecular geometry and interaction patterns. Specifically, the GEMF consists of a graph embedding layer, a message passing phase, and a multi-scale fusion module. GEMF can effectively represent protein-ligand complexes as graphs, with graph embeddings based on physicochemical and geometric properties. Moreover, our dual-stream message passing framework models both covalent and non-covalent interactions. In particular, the edge-update mechanism, which is based on line graphs, can fuse both distance and angle information in the covalent branch. In addition, the communication branch consisting of multiple heterogeneous interaction modules is developed to learn intricate interaction patterns. Finally, we fuse the multi-scale features from the covalent, non-covalent, and heterogeneous interaction branches. The extensive experimental results on several benchmarks demonstrate the superiority of GEMF compared with other state-of-the-art methods.


Assuntos
Redes Neurais de Computação , Ligação Proteica , Proteínas , Proteínas/química , Proteínas/metabolismo , Ligantes , Algoritmos , Biologia Computacional/métodos , Descoberta de Drogas/métodos
5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446737

RESUMO

Accurately predicting the binding affinity between proteins and ligands is crucial in drug screening and optimization, but it is still a challenge in computer-aided drug design. The recent success of AlphaFold2 in predicting protein structures has brought new hope for deep learning (DL) models to accurately predict protein-ligand binding affinity. However, the current DL models still face limitations due to the low-quality database, inaccurate input representation and inappropriate model architecture. In this work, we review the computational methods, specifically DL-based models, used to predict protein-ligand binding affinity. We start with a brief introduction to protein-ligand binding affinity and the traditional computational methods used to calculate them. We then introduce the basic principles of DL models for predicting protein-ligand binding affinity. Next, we review the commonly used databases, input representations and DL models in this field. Finally, we discuss the potential challenges and future work in accurately predicting protein-ligand binding affinity via DL models.


Assuntos
Aprendizado Profundo , Ligantes , Bases de Dados Factuais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261341

RESUMO

Ribonucleic acids (RNAs) play important roles in cellular regulation. Consequently, dysregulation of both coding and non-coding RNAs has been implicated in several disease conditions in the human body. In this regard, a growing interest has been observed to probe into the potential of RNAs to act as drug targets in disease conditions. To accelerate this search for disease-associated novel RNA targets and their small molecular inhibitors, machine learning models for binding affinity prediction were developed specific to six RNA subtypes namely, aptamers, miRNAs, repeats, ribosomal RNAs, riboswitches and viral RNAs. We found that differences in RNA sequence composition, flexibility and polar nature of RNA-binding ligands are important for predicting the binding affinity. Our method showed an average Pearson correlation (r) of 0.83 and a mean absolute error of 0.66 upon evaluation using the jack-knife test, indicating their reliability despite the low amount of data available for several RNA subtypes. Further, the models were validated with external blind test datasets, which outperform other existing quantitative structure-activity relationship (QSAR) models. We have developed a web server to host the models, RNA-Small molecule binding Affinity Predictor, which is freely available at: https://web.iitm.ac.in/bioinfo2/RSAPred/.


Assuntos
MicroRNAs , Humanos , Reprodutibilidade dos Testes , Ciclo Celular , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
7.
J Biol Chem ; 300(1): 105573, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122901

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) oxidatively depolymerize recalcitrant polysaccharides, which is important for biomass conversion. The catalytic domains of many LPMOs are linked to carbohydrate-binding modules (CBMs) through flexible linkers, but the function of these CBMs in LPMO catalysis is not well understood. In this study, we utilized MtLPMO9L and MtLPMO9G derived from Myceliophthora thermophila to investigate the impact of CBMs on LPMO activity, with particular emphasis on their influence on H2O2 tolerance. Using truncated forms of MtLPMO9G generated by removing the CBM, we found reduced substrate binding affinity and enzymatic activity. Conversely, when the CBM was fused to the C terminus of the single-domain MtLPMO9L to create MtLPMO9L-CBM, we observed a substantial improvement in substrate binding affinity, enzymatic activity, and notably, H2O2 tolerance. Furthermore, molecular dynamics simulations confirmed that the CBM fusion enhances the proximity of the active site to the substrate, thereby promoting multilocal cleavage and impacting the exposure of the copper active site to H2O2. Importantly, the fusion of CBM resulted in more efficient consumption of H2O2 by LPMO, leading to improved enzymatic activity and reduced auto-oxidative damage of the copper active center.


Assuntos
Domínio Catalítico , Peróxido de Hidrogênio , Oxigenases de Função Mista , Polissacarídeos , Sordariales , Cobre/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Sordariales/enzimologia , Sordariales/metabolismo , Simulação de Dinâmica Molecular
8.
J Biol Chem ; 300(2): 105623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176650

RESUMO

Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp-IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 (p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host-pathogen interaction.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Humanos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Streptococcus pyogenes/metabolismo
9.
J Virol ; 98(3): e0115723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305152

RESUMO

Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Cricetulus , Microscopia Crioeletrônica , Especificidade de Hospedeiro , Mesocricetus , Animais , Cricetinae , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Linhagem Celular , COVID-19/virologia , Cricetulus/metabolismo , Cricetulus/virologia , Mesocricetus/metabolismo , Mesocricetus/virologia , Mutação , Animais de Estimação/metabolismo , Animais de Estimação/virologia , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura
10.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36545795

RESUMO

Drug-target binding affinity prediction is a fundamental task for drug discovery and has been studied for decades. Most methods follow the canonical paradigm that processes the inputs of the protein (target) and the ligand (drug) separately and then combines them together. In this study we demonstrate, surprisingly, that a model is able to achieve even superior performance without access to any protein-sequence-related information. Instead, a protein is characterized completely by the ligands that it interacts. Specifically, we treat different proteins separately, which are jointly trained in a multi-head manner, so as to learn a robust and universal representation of ligands that is generalizable across proteins. Empirical evidences show that the novel paradigm outperforms its competitive sequence-based counterpart, with the Mean Squared Error (MSE) of 0.4261 versus 0.7612 and the R-Square of 0.7984 versus 0.6570 compared with DeepAffinity. We also investigate the transfer learning scenario where unseen proteins are encountered after the initial training, and the cross-dataset evaluation for prospective studies. The results reveals the robustness of the proposed model in generalizing to unseen proteins as well as in predicting future data. Source codes and data are available at https://github.com/huzqatpku/SAM-DTA.


Assuntos
Proteínas , Software , Ligantes , Estudos Prospectivos , Proteínas/química , Sequência de Aminoácidos , Ligação Proteica
11.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36627113

RESUMO

Protein-ligand binding affinity prediction is an important task in structural bioinformatics for drug discovery and design. Although various scoring functions (SFs) have been proposed, it remains challenging to accurately evaluate the binding affinity of a protein-ligand complex with the known bound structure because of the potential preference of scoring system. In recent years, deep learning (DL) techniques have been applied to SFs without sophisticated feature engineering. Nevertheless, existing methods cannot model the differential contribution of atoms in various regions of proteins, and the relationship between atom properties and intermolecular distance is also not fully explored. We propose a novel empirical graph neural network for accurate protein-ligand binding affinity prediction (EGNA). Graphs of protein, ligand and their interactions are constructed based on different regions of each bound complex. Proteins and ligands are effectively represented by graph convolutional layers, enabling the EGNA to capture interaction patterns precisely by simulating empirical SFs. The contributions of different factors on binding affinity can thus be transparently investigated. EGNA is compared with the state-of-the-art machine learning-based SFs on two widely used benchmark data sets. The results demonstrate the superiority of EGNA and its good generalization capability.


Assuntos
Redes Neurais de Computação , Proteínas , Ligantes , Proteínas/química , Ligação Proteica , Algoritmos
12.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651610

RESUMO

The accurate prediction of the effect of amino acid mutations for protein-protein interactions (PPI $\Delta \Delta G$) is a crucial task in protein engineering, as it provides insight into the relevant biological processes underpinning protein binding and provides a basis for further drug discovery. In this study, we propose MpbPPI, a novel multi-task pre-training-based geometric equivariance-preserving framework to predict PPI  $\Delta \Delta G$. Pre-training on a strictly screened pre-training dataset is employed to address the scarcity of protein-protein complex structures annotated with PPI $\Delta \Delta G$ values. MpbPPI employs a multi-task pre-training technique, forcing the framework to learn comprehensive backbone and side chain geometric regulations of protein-protein complexes at different scales. After pre-training, MpbPPI can generate high-quality representations capturing the effective geometric characteristics of labeled protein-protein complexes for downstream $\Delta \Delta G$ predictions. MpbPPI serves as a scalable framework supporting different sources of mutant-type (MT) protein-protein complexes for flexible application. Experimental results on four benchmark datasets demonstrate that MpbPPI is a state-of-the-art framework for PPI $\Delta \Delta G$ predictions. The data and source code are available at https://github.com/arantir123/MpbPPI.


Assuntos
Aminoácidos , Benchmarking , Mutação , Descoberta de Drogas , Aprendizagem
13.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36681903

RESUMO

Binding affinity prediction largely determines the discovery efficiency of lead compounds in drug discovery. Recently, machine learning (ML)-based approaches have attracted much attention in hopes of enhancing the predictive performance of traditional physics-based approaches. In this study, we evaluated the impact of structural dynamic information on the binding affinity prediction by comparing the models trained on different dimensional descriptors, using three targets (i.e. JAK1, TAF1-BD2 and DDR1) and their corresponding ligands as the examples. Here, 2D descriptors are traditional ECFP4 fingerprints, 3D descriptors are the energy terms of the Smina and NNscore scoring functions and 4D descriptors contain the structural dynamic information derived from the trajectories based on molecular dynamics (MD) simulations. We systematically investigate the MD-refined binding affinity prediction performance of three classical ML algorithms (i.e. RF, SVR and XGB) as well as two common virtual screening methods, namely Glide docking and MM/PBSA. The outcomes of the ML models built using various dimensional descriptors and their combinations reveal that the MD refinement with the optimized protocol can improve the predictive performance on the TAF1-BD2 target with considerable structural flexibility, but not for the less flexible JAK1 and DDR1 targets, when taking docking poses as the initial structure instead of the crystal structures. The results highlight the importance of the initial structures to the final performance of the model through conformational analysis on the three targets with different flexibility.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Proteínas/química , Ligação Proteica , Aprendizado de Máquina , Simulação de Acoplamento Molecular
14.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38084920

RESUMO

Protein-ligand binding affinity (PLBA) prediction is the fundamental task in drug discovery. Recently, various deep learning-based models predict binding affinity by incorporating the three-dimensional (3D) structure of protein-ligand complexes as input and achieving astounding progress. However, due to the scarcity of high-quality training data, the generalization ability of current models is still limited. Although there is a vast amount of affinity data available in large-scale databases such as ChEMBL, issues such as inconsistent affinity measurement labels (i.e. IC50, Ki, Kd), different experimental conditions, and the lack of available 3D binding structures complicate the development of high-precision affinity prediction models using these data. To address these issues, we (i) propose Multi-task Bioassay Pre-training (MBP), a pre-training framework for structure-based PLBA prediction; (ii) construct a pre-training dataset called ChEMBL-Dock with more than 300k experimentally measured affinity labels and about 2.8M docked 3D structures. By introducing multi-task pre-training to treat the prediction of different affinity labels as different tasks and classifying relative rankings between samples from the same bioassay, MBP learns robust and transferrable structural knowledge from our new ChEMBL-Dock dataset with varied and noisy labels. Experiments substantiate the capability of MBP on the structure-based PLBA prediction task. To the best of our knowledge, MBP is the first affinity pre-training model and shows great potential for future development. MBP web-server is now available for free at: https://huggingface.co/spaces/jiaxianustc/mbp.


Assuntos
Descoberta de Drogas , Proteínas , Ligantes , Proteínas/química , Ligação Proteica , Marcadores de Afinidade
15.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37193676

RESUMO

Protein-deoxyribonucleic acid (DNA) interactions are important in a variety of biological processes. Accurately predicting protein-DNA binding affinity has been one of the most attractive and challenging issues in computational biology. However, the existing approaches still have much room for improvement. In this work, we propose an ensemble model for Protein-DNA Binding Affinity prediction (emPDBA), which combines six base models with one meta-model. The complexes are classified into four types based on the DNA structure (double-stranded or other forms) and the percentage of interface residues. For each type, emPDBA is trained with the sequence-based, structure-based and energy features from binding partners and complex structures. Through feature selection by the sequential forward selection method, it is found that there do exist considerable differences in the key factors contributing to intermolecular binding affinity. The complex classification is beneficial for the important feature extraction for binding affinity prediction. The performance comparison of our method with other peer ones on the independent testing dataset shows that emPDBA outperforms the state-of-the-art methods with the Pearson correlation coefficient of 0.53 and the mean absolute error of 1.11 kcal/mol. The comprehensive results demonstrate that our method has a good performance for protein-DNA binding affinity prediction. Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/emPDBA/.


Assuntos
Proteínas , Software , Proteínas/química , Biologia Computacional/métodos , DNA/genética , Ligação Proteica
16.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38102069

RESUMO

Protein-ligand interactions are increasingly profiled at high-throughput, playing a vital role in lead compound discovery and drug optimization. Accurate prediction of binding pose and binding affinity constitutes a pivotal challenge in advancing our computational understanding of protein-ligand interactions. However, inherent limitations still exist, including high computational cost for conformational search sampling in traditional molecular docking tools, and the unsatisfactory molecular representation learning and intermolecular interaction modeling in deep learning-based methods. Here we propose a geometry-aware attention-based deep learning model, GAABind, which effectively predicts the pocket-ligand binding pose and binding affinity within a multi-task learning framework. Specifically, GAABind comprehensively captures the geometric and topological properties of both binding pockets and ligands, and employs expressive molecular representation learning to model intramolecular interactions. Moreover, GAABind proficiently learns the intermolecular many-body interactions and simulates the dynamic conformational adaptations of the ligand during its interaction with the protein through meticulously designed networks. We trained GAABind on the PDBbindv2020 and evaluated it on the CASF2016 dataset; the results indicate that GAABind achieves state-of-the-art performance in binding pose prediction and shows comparable binding affinity prediction performance. Notably, GAABind achieves a success rate of 82.8% in binding pose prediction, and the Pearson correlation between predicted and experimental binding affinities reaches up to 0.803. Additionally, we assessed GAABind's performance on the severe acute respiratory syndrome coronavirus 2 main protease cross-docking dataset. In this evaluation, GAABind demonstrates a notable success rate of 76.5% in binding pose prediction and achieves the highest Pearson correlation coefficient in binding affinity prediction compared with all baseline methods.


Assuntos
Proteínas , Simulação de Acoplamento Molecular , Ligantes , Proteínas/química , Ligação Proteica , Conformação Molecular
17.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38221904

RESUMO

Identifying the binding affinity between a drug and its target is essential in drug discovery and repurposing. Numerous computational approaches have been proposed for understanding these interactions. However, most existing methods only utilize either the molecular structure information of drugs and targets or the interaction information of drug-target bipartite networks. They may fail to combine the molecule-scale and network-scale features to obtain high-quality representations. In this study, we propose CSCo-DTA, a novel cross-scale graph contrastive learning approach for drug-target binding affinity prediction. The proposed model combines features learned from the molecular scale and the network scale to capture information from both local and global perspectives. We conducted experiments on two benchmark datasets, and the proposed model outperformed existing state-of-art methods. The ablation experiment demonstrated the significance and efficacy of multi-scale features and cross-scale contrastive learning modules in improving the prediction performance. Moreover, we applied the CSCo-DTA to predict the novel potential targets for Erlotinib and validated the predicted targets with the molecular docking analysis.


Assuntos
Benchmarking , Aprendizagem , Simulação de Acoplamento Molecular , Sistemas de Liberação de Medicamentos , Descoberta de Drogas
18.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682005

RESUMO

Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.


Assuntos
Aprendizado de Máquina , Proteínas , Ligação Proteica , Proteínas/química , Modelos Teóricos
19.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197311

RESUMO

Understanding the impact of mutations on protein-protein binding affinity is a key objective for a wide range of biotechnological applications and for shedding light on disease-causing mutations, which are often located at protein-protein interfaces. Over the past decade, many computational methods using physics-based and/or machine learning approaches have been developed to predict how protein binding affinity changes upon mutations. They all claim to achieve astonishing accuracy on both training and test sets, with performances on standard benchmarks such as SKEMPI 2.0 that seem overly optimistic. Here we benchmarked eight well-known and well-used predictors and identified their biases and dataset dependencies, using not only SKEMPI 2.0 as a test set but also deep mutagenesis data on the severe acute respiratory syndrome coronavirus 2 spike protein in complex with the human angiotensin-converting enzyme 2. We showed that, even though most of the tested methods reach a significant degree of robustness and accuracy, they suffer from limited generalizability properties and struggle to predict unseen mutations. Interestingly, the generalizability problems are more severe for pure machine learning approaches, while physics-based methods are less affected by this issue. Moreover, undesirable prediction biases toward specific mutation properties, the most marked being toward destabilizing mutations, are also observed and should be carefully considered by method developers. We conclude from our analyses that there is room for improvement in the prediction models and suggest ways to check, assess and improve their generalizability and robustness.


Assuntos
Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , Mutação , Viés
20.
Plant Physiol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717740

RESUMO

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA