Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Small ; : e2406782, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344630

RESUMO

Transforming glycerol (GLY, biodiesel by-product) into lactic acid (LA, biodegradable polymer monomer) through sustainable electrocatalysis presents an effective strategy to reduce biodiesel production costs and consequently enhance its applications. However, current research faces a trade-off between achieving industrially-relevant current density (>300 mA cm-2) and high LA selectivity (>80%), limiting technological advancement. Herein, a Au3Ag1 alloy electrocatalyst is developed that demonstrates exceptional LA selectivity (85%) under high current density (>400 mA cm-2). The current density can further reach 1022 mA cm-2 at 1.2 V versus RHE, superior to most previous reports for GLY electrooxidation. It is revealed that the Au3Ag1 alloy can enhance GLY adsorption and reactive oxygen species (OH*) generation, thereby significantly boosting activity. As a proof of concept, a homemade flow electrolyzer is constructed, achieving remarkable LA productivity of 68.9 mmol h-1 at the anode, coupled with efficient H2 production of 3.5 L h-1 at the cathode. To further unveil the practical possibilities of this technology, crude GLY extracted from peanut oil into LA is successfully transformed, while simultaneously producing H2 at the cathode. This work showcases a sustainable method for converting biodiesel waste into high-value products and hydrogen fuel, promoting the broader application of biodiesel.

2.
Bioresour Technol ; 326: 124733, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33494006

RESUMO

Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.


Assuntos
Poli-Hidroxialcanoatos , Biomassa , Reatores Biológicos , Carbono , Ácidos Graxos Voláteis , Resíduos Industriais
3.
Front Bioeng Biotechnol ; 9: 624859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604181

RESUMO

The objective of the current work was to investigate the potential of halophilic bacterial isolates for efficient utilization of crude glycerol from algal biodiesel waste into polyhydroxyalkanoates (PHAs) a green plastic. Screening of the isolates was directly done in algal biodiesel waste residue containing solid agar plates supplemented with Nile red. Crude glycerol is a biodiesel waste whose bioconversion into value-added products provides an alternative for efficient management with dual benefit. For the scale-up studies of PHAs, Halomonas spp. especially H. daqingensis was observed as a potential candidate growing well in 3% Algal biodiesel waste residue (ABWR), 5% NaCl supplementation at 35°C within 48 h of incubation. Maximum Cell dry weight (CDW) of 0.362 ± 0.001 g and 0.236 ± 0.003 g PHA was obtained with H. daqingensis when grown in the fermentor with 0.5 vvm air flow rate and 200 rpm containing 3% ABWR supplemented with 5% NaCl at 35°C incubation temperature for 48 h. ABWR can serve as a sole substrate for PHA production at an industrial scale serving two approaches: getting rid of the biodiesel industrial waste containing high amount of glycerol besides using waste replacing commercial substrate thereby reducing the cost of the product.

4.
Environ Sci Pollut Res Int ; 27(15): 17619-17630, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31845244

RESUMO

This work aims to evaluate the removal of pharmaceutical drug using discarded biodiesel waste-derived lignocellulosic-based activated carbon biomaterial. Lignocellulosic-based activated carbon (LAC) biomaterial was prepared from Jatropha shell (biodiesel processing waste) by a zinc chloride activation method. The LAC biomaterial was characterized using various techniques including powder XRD, FT-IR, SEM-EDAX, and BET analysis. LAC biomaterial was applied to examine the adsorption of sulfamethoxazole (SMZ) drug in aqueous solution under ambient temperature. Various experimental parameters such as the effect of pH, treatment time, adsorbate concentration, and LAC dose of adsorption experiments were thoroughly examined and optimized. Under the optimal conditions, LAC biomaterial showed the maximum adsorption removal efficiency of SMZ drug. The kinetic models of Lagergren first-order, pseudo-second-order, intraparticle diffusion, and Bhangam's equation for SMZ removal onto LAC were used to recognize the probable mechanism of adsorption manner. From the experimental results, the Freundlich isotherm model (Kf = 83.56 mg g-1 (L mg-1)1/n) shows similar fit than the Langmuir (Q0 = 206.2 mg g-1) and Dubinin-Radushkevich (Qm = 150.69 mg g-1) condition models of adsorption isotherms. The rate constants of adsorption were found to confirm the pseudo-first-order kinetic and Bhangam's models with a significant correlation. The separation factor (RL) showed the favorable condition of the adsorption isotherm for the experimental system. The desorption results indicate that the ionic molecular exchange of SMZ from the hydroxyl group of LAC surface plays an important role in the recycling processes. Therefore, these results proved that the prepared low-cost LAC biomaterial could be used as an efficient adsorption material for the effective removal of pharmaceutical drugs in aqueous samples.


Assuntos
Biocombustíveis , Poluentes Químicos da Água/análise , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Lignina , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfametoxazol , Termodinâmica
5.
Microorganisms ; 8(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218311

RESUMO

Within this work, the microbial synthesis of (2R,3S)-isocitric acid (ICA), a metabolite of the nonconventional yeast Yarrowia lipolytica, from biodiesel waste, has been studied. The selected strain Y. lipolytica VKM Y-2373 synthesized ICA with citric acid (CA) as a byproduct. This process can be regulated by changing cultivation conditions. The maximal production of ICA with the minimal formation of the byproduct was provided by the use of a concentration of (NH4)2SO4 (6 g/L); the addition of biodiesel waste to cultivation medium in 20-60 g/L portions; maintaining the pH of the cultivation medium at 6, and degree of aeration between 25% and 60% of saturation. Itaconic acid at a concentration of 15 mM favorably influenced the production of ICA by the selected strain. The optimization of cultivation conditions allowed us to increase the concentration of ICA in the culture liquid from 58.32 to 90.2 g/L, the product yield (Y) by 40%, and the ICA/CA ratio from 1.1:1 to 3:1. Research on laboratory animals indicated that ICA counteracted the negative effect of ammonium molybdate (10-5 М) and lead diacetate (10-7 М) on the learning and spatial memory of rats, including those exposed to emotional stress.

6.
Bioresour Technol ; 219: 365-370, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27501033

RESUMO

The aims of this study were to simplify the fermentation medium and to optimize the conditions of dark fermentation of residual glycerin to produce biohydrogen. It was possible to remove all micronutrients of fermentation medium and improve biohydrogen production by applying residual glycerin as feedstock. After statistical analysis of the following parameters pH, glycerin concentration and volatile suspended solids, the values of 5.5; 0.5g.L(-1) and 8.7g.L(-1), respectively, were defined as optimum condition for this process. It generated 2.44molH2/molglycerin, an expressive result when compared to previous results reported in literature and considering that theoretical yield of H2 from glycerol in dark fermentation process is 3molH2/molglycerol. This study allowed the improvement of yield and productivity by 68% and 67%, respectively.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Glicerol , Hidrogênio , Fermentação , Glicerol/química , Glicerol/metabolismo , Hidrogênio/análise , Hidrogênio/química , Hidrogênio/metabolismo
7.
Bioresour Technol ; 182: 8-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25678409

RESUMO

Two 10 L completely mixed reactors operating at 37°C and 20 days SRT were used to evaluate the relationships between reactor performance and microbial community dynamics during anaerobic co-digestion of biodiesel waste glycerin (BWG) with municipal wastewater sludge (MWS). The addition of up to 1.35% (v/v) BWG to reactor feeds yielded increased VS and COD removal together with enhanced the biogas production and methane yield. This represented 50% of the MWS feed COD. Pyrosequencing analysis showed Methanosaeta (acetoclastic) and Methanomicrobium (hydrogenotrophic) to be the methanogenic genera present in greatest diversity during stable reactor operation. Methanosaeta sequences predominated at the lowest BWG loading while those of Methanomicrobium were present in greatest abundance at the higher BWG loadings. Genus Candidatus cloacamonas was present in the greatest number of bacterial sequences at all loadings. Alkalinity, pH, biogas production and methane yield declined and VFA concentrations (especially propionate) increased during the highest BWG loading.


Assuntos
Reatores Biológicos/microbiologia , Glicerol/metabolismo , Consórcios Microbianos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo , Consórcios Microbianos/genética , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA