Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 91: 449-473, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35303792

RESUMO

Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine.


Assuntos
Pesquisa Biomédica , Metaloproteínas , Humanos , Metaloproteínas/análise , Metaloproteínas/química , Metaloproteínas/genética , Metais/análise , Metais/química , Proteoma/genética , Proteômica/métodos
2.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29668305

RESUMO

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostase , Imidazóis/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Óperon , Transporte Proteico
3.
Proc Natl Acad Sci U S A ; 120(12): e2214512120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913566

RESUMO

Biocatalytic C-H activation has the potential to merge enzymatic and synthetic strategies for bond formation. FeII/αKG-dependent halogenases are particularly distinguished for their ability both to control selective C-H activation as well as to direct group transfer of a bound anion along a reaction axis separate from oxygen rebound, enabling the development of new transformations. In this context, we elucidate the basis for the selectivity of enzymes that perform selective halogenation to yield 4-Cl-lysine (BesD), 5-Cl-lysine (HalB), and 4-Cl-ornithine (HalD), allowing us to probe how site-selectivity and chain length selectivity are achieved. We now report the crystal structure of the HalB and HalD, revealing the key role of the substrate-binding lid in positioning the substrate for C4 vs C5 chlorination and recognition of lysine vs ornithine. Targeted engineering of the substrate-binding lid further demonstrates that these selectivities can be altered or switched, showcasing the potential to develop halogenases for biocatalytic applications.


Assuntos
Aminoácidos , Lisina , Halogenação , Ornitina
4.
Proc Natl Acad Sci U S A ; 120(27): e2219036120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364102

RESUMO

We report the preparation and spectroscopic characterization of a highly elusive copper site bound exclusively to oxygen donor atoms within a protein scaffold. Despite copper generally being considered unsuitable for use in MRI contrast agents, which in the clinic are largely Gd(III) based, the designed copper coiled coil displays relaxivity values equal to, or superior than, those of the Gd(III) analog at clinical field strengths. The creation of this new-to-biology proteinaceous CuOx-binding site demonstrates the power of the de novo peptide design approach to access chemistry for abiological applications, such as for the development of MRI contrast agents.


Assuntos
Meios de Contraste , Cobre , Cobre/metabolismo , Meios de Contraste/química , Imageamento por Ressonância Magnética , Sítios de Ligação , Peptídeos
5.
Proc Natl Acad Sci U S A ; 120(43): e2308286120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844252

RESUMO

The "Histidine-brace" (His-brace) copper-binding site, composed of Cu(His)2 with a backbone amine, is found in metalloproteins with diverse functions. A primary example is lytic polysaccharide monooxygenase (LPMO), a class of enzymes that catalyze the oxidative depolymerization of polysaccharides, providing not only an energy source for native microorganisms but also a route to more effective industrial biomass conversion. Despite its importance, how the Cu His-brace site performs this unique and challenging oxidative depolymerization reaction remains to be understood. To answer this question, we have designed a biosynthetic model of LPMO by incorporating the Cu His-brace motif into azurin, an electron transfer protein. Spectroscopic studies, including ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance, confirm copper binding at the designed His-brace site. Moreover, the designed protein is catalytically active towards both cellulose and starch, the native substrates of LPMO, generating degraded oligosaccharides with multiturnovers by C1 oxidation. It also performs oxidative cleavage of the model substrate 4-nitrophenyl-D-glucopyranoside, achieving a turnover number ~9% of that of a native LPMO assayed under identical conditions. This work presents a rationally designed artificial metalloenzyme that acts as a structural and functional mimic of LPMO, which provides a promising system for understanding the role of the Cu His-brace site in LPMO activity and potential application in polysaccharide degradation.


Assuntos
Cobre , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Cobre/metabolismo , Histidina , Polissacarídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(51): e2212723119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508659

RESUMO

The design of selective metal-binding sites is a challenge in both small-molecule and macromolecular chemistry. Selective recognition of manganese (II)-the first-row transition metal ion that tends to bind with the lowest affinity to ligands, as described by the Irving-Williams series-is particularly difficult. As a result, there is a dearth of chemical biology tools with which to study manganese physiology in live cells, which would advance understanding of photosynthesis, host-pathogen interactions, and neurobiology. Here we report the rational re-engineering of the lanthanide-binding protein, lanmodulin, into genetically encoded fluorescent sensors for MnII, MnLaMP1 and MnLaMP2. These sensors with effective Kd(MnII) of 29 and 7 µM, respectively, defy the Irving-Williams series to selectively detect MnII in vitro and in vivo. We apply both sensors to visualize kinetics of bacterial labile manganese pools. Biophysical studies indicate the importance of coordinated solvent and hydrophobic interactions in the sensors' selectivity. Our results establish lanmodulin as a versatile scaffold for design of selective protein-based biosensors and chelators for metals beyond the f-block.


Assuntos
Manganês , Metais , Manganês/metabolismo , Metais/metabolismo , Cinética , Ligantes
7.
Chemistry ; 30(21): e202304212, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408264

RESUMO

Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (CuII-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of CuII-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity. Indeed, CuII-Dp44mT can catalyze the oxidation of thiols although with slow kinetics. The present work aims to obtain insights into the catalytic activity and selectivity of CuII-Dp44mT toward the oxidation of different biologically relevant thiols. Reduced glutathione (GSH), L-cysteine (Cys), N-acetylcysteine (NAC), D-penicillamine (D-Pen), and the two model proteins glutaredoxin (Grx) and thioredoxin (Trx) were investigated. CuII-Dp44mT catalyzed the oxidation of these thiols with different kinetics, with rates in the following order D-Pen>Cys≫NAC>GSH and Trx>Grx. CuII-Dp44mT was more efficient than CuII chloride for the oxidation of NAC and GSH, but not D-Pen and Cys. In mixtures of biologically relevant concentrations of GSH and either Cys, Trx, or Grx, the oxidation kinetics and spectral properties were similar to that of GSH alone, indicating that the interaction of these thiols with CuII-Dp44mT is dominated by GSH. Hence GSH could protect other thiols against potential deleterious oxidation by CuII-Dp44mT.


Assuntos
Cobre , Tiossemicarbazonas , Cobre/metabolismo , Compostos de Sulfidrila , Oxirredução , Glutationa/metabolismo , Penicilamina/metabolismo , Acetilcisteína/metabolismo
8.
Chemistry ; 30(4): e202302720, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37888749

RESUMO

The impact of kinetic lability or reactivity on in vitro cytotoxicity, stability in plasma, in vivo tumor and tissue accumulation, and antitumor efficacy of functional platinum(II) (Pt) anticancer agents containing a O˄O ß-diketonate leaving ligand remain largely unexplored. To investigate this, we synthesized Pt complexes [(NH3 )2 Pt(L1-H)]NO3 and [(DACH)Pt(L1-H)]NO3 (L1=4,4,4-trifluoro-1-ferrocenylbutane-1,3-dione, DACH=1R,2R-cyclohexane-1,2-diamine) containing an electron deficient [L1-H]- O˄O leaving ligand and [(NH3 )2 Pt(L2-H)]NO3 and [(DACH)Pt(L2-H)]NO3 (L2=1-ferrocenylbutane-1,3-dione) containing an electron-rich [L2-H]- O˄O leaving ligand. While all four complexes have comparable lipophilicity, the presence of the electron-withdrawing CF3 group was found to dramatically enhance the reactivity of these complexes toward nucleophilic biomolecules. In vitro cellular assays revealed that the more reactive complexes have higher cellular uptake and higher anticancer potency as compared to their less reactive analogs. But the scenario is opposite in vivo, where the less reactive complex showed improved tissue and tumor accumulation and better anticancer efficacy in mice bearing ovarian xenograft when compared to its more reactive analog. Finally, in addition to demonstrating the profound but contrasting impact of kinetic lability on in vitro and in vivo antitumor potencies, we also described the impact of kinetic lability on the mechanism of action of this class of promising antitumor agents.


Assuntos
Antineoplásicos , Cicloexilaminas , Neoplasias , Radiossensibilizantes , Humanos , Animais , Camundongos , Platina , Ligantes , Compostos Organoplatínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
9.
Chemistry ; 30(32): e202400217, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574234

RESUMO

Cancer is one of the deadliest diseases worldwide. Chemotherapy remains one of the most dominant forms for anticancer treatment. Despite their clinical success, the used chemotherapeutic agents are associated with severe side effect and pharmacological limitations. To overcome these drawbacks there is a need for the development of new types of chemotherapeutic agents. Herein, the chemical synthesis and biological evaluation of dinuclear rhenium(I) complexes as potential chemotherapeutic drug candidates are proposed. The metal complexes were found to be internalized by an energy dependent endocytosis pathway, primary accumulating in the mitochondria. The rhenium(I) complexes demonstrated to induce cell death against a variety of cancer cells in the micromolar range through apoptosis. The lead compound showed to eradicate a pancreatic carcinoma multicellular tumor spheroid at micromolar concentrations.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Rênio , Rênio/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001621

RESUMO

The radical S-adenosylmethionine (rSAM) enzyme SuiB catalyzes the formation of an unusual carbon-carbon bond between the sidechains of lysine (Lys) and tryptophan (Trp) in the biosynthesis of a ribosomal peptide natural product. Prior work on SuiB has suggested that the Lys-Trp cross-link is formed via radical electrophilic aromatic substitution (rEAS), in which an auxiliary [4Fe-4S] cluster (AuxI), bound in the SPASM domain of SuiB, carries out an essential oxidation reaction during turnover. Despite the prevalence of auxiliary clusters in over 165,000 rSAM enzymes, direct evidence for their catalytic role has not been reported. Here, we have used electron paramagnetic resonance (EPR) spectroscopy to dissect the SuiB mechanism. Our studies reveal substrate-dependent redox potential tuning of the AuxI cluster, constraining it to the oxidized [4Fe-4S]2+ state, which is active in catalysis. We further report the trapping and characterization of an unprecedented cross-linked Lys-Trp radical (Lys-Trp•) in addition to the organometallic Ω intermediate, providing compelling support for the proposed rEAS mechanism. Finally, we observe oxidation of the Lys-Trp• intermediate by the redox-tuned [4Fe-4S]2+ AuxI cluster by EPR spectroscopy. Our findings provide direct evidence for a role of a SPASM domain auxiliary cluster and consolidate rEAS as a mechanistic paradigm for rSAM enzyme-catalyzed carbon-carbon bond-forming reactions.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Lisina/química , Proteínas Ribossômicas/química , S-Adenosilmetionina/química , Streptococcus/química , Triptofano/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Clonagem Molecular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Lisina/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , S-Adenosilmetionina/metabolismo , Streptococcus/enzimologia , Streptococcus/genética , Especificidade por Substrato , Termodinâmica , Triptofano/metabolismo
11.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542366

RESUMO

The ongoing anthropogenic pollution of the biosphere with As, Cd, Hg and Pb will inevitably result in an increased influx of their corresponding toxic metal(loid) species into the bloodstream of human populations, including children and pregnant women. To delineate whether the measurable concentrations of these inorganic pollutants in the bloodstream are tolerable or implicated in the onset of environmental diseases urgently requires new insight into their dynamic bioinorganic chemistry in the bloodstream-organ system. Owing to the human exposure to multiple toxic metal(loid) species, the mechanism of chronic toxicity of each of these needs to be integrated into a framework to better define the underlying exposure-disease relationship. Accordingly, this review highlights some recent advances into the bioinorganic chemistry of the Cd2+, Hg2+ and CH3Hg+ in blood plasma, red blood cells and target organs and provides a first glimpse of their emerging mechanisms of chronic toxicity. Although many important knowledge gaps remain, it is essential to design experiments with the intent of refining these mechanisms to eventually establish a framework that may allow us to causally link the cumulative exposure of human populations to multiple toxic metal(loid) species with environmental diseases of unknown etiology that do not appear to have a genetic origin. Thus, researchers from a variety of scientific disciplines need to contribute to this interdisciplinary effort to rationally address this public health threat which may require the implementation of stronger regulatory requirements to improve planetary and human health, which are fundamentally intertwined.


Assuntos
Poluentes Ambientais , Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Humanos , Feminino , Gravidez , Cádmio/análise , Mercúrio/análise , Intoxicação por Metais Pesados , Poluição Ambiental , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , China
12.
Molecules ; 29(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930809

RESUMO

Cobalt(III) compounds with tetradentate ligands have been widely employed to deliver cytotoxic and imaging agents into cells. A large body of work has focused on using cobalt(III)-cyclam scaffolds for this purpose. Here, we investigate the cytotoxic properties of cobalt(III) complexes containing 14-membered macrocycles related to cyclam. A breast cancer stem cell (CSC) in vitro model was used to gauge efficacy. Specifically, [Co(1,4,7,11-tetraazacyclotetradecane)Cl2]+ (1) and [Co(1-oxa-4,8,12-triazacyclotetradecane)Cl2]+ (2) were synthesised and characterised, and their breast CSC activity was determined. The cobalt(III) complexes 1 and 2 displayed micromolar potency towards bulk breast cancer cells and breast CSCs grown in monolayers. Notably, 1 and 2 displayed selective potency towards breast CSCs over bulk breast cancer cells (up to 4.5-fold), which was similar to salinomycin (an established breast CSC-selective agent). The cobalt(III) complexes 1 and 2 were also able to inhibit mammosphere formation at low micromolar doses (with respect to size and number). The mammopshere inhibitory effect of 2 was similar to that of salinomycin. Our studies show that cobalt(III) complexes with 1,4,7,11-tetraazacyclotetradecane and 1-oxa-4,8,12-triazacyclotetradecane macrocycles could be useful starting points for the development of new cobalt-based delivery systems that can transport cytotoxic and imaging agents into breast CSCs.


Assuntos
Antineoplásicos , Cobalto , Células-Tronco Neoplásicas , Humanos , Cobalto/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/síntese química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Sobrevivência Celular/efeitos dos fármacos
13.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474580

RESUMO

Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological potential is now an urgent matter. The biological activities of metal complexes have been reported to have antitumor, antimicrobial, anti-inflammatory, anti-infective and antiparasitic effects, amongst others. Metal complexes are effective because they possess unique properties. For example, the complex entity possesses the effective biological activity, then the formation of coordination bonds between the metal ions and ligands is controlled, metal ions provide it with extraordinary mechanisms of action because of characteristics such as d-orbitals, oxidation states, and specific orientations; metal complexes also exhibit good stability and good physicochemical properties such as water solubility. Platinum is a transition metal widely used in the design of drugs with antineoplastic activities; however, platinum is associated with side effects which have made it necessary to search for, and design, novel complexes based on other metals. Copper is a biometal which is found in living systems; it is now used in the design of metal complexes with biological activities that have demonstrated antitumoral, antimicrobial and anti-inflammatory effects, amongst others. In this review, we consider the open horizons of Cu(II)- and Pt(II)-based complexes, new trends in their design, their synthesis, their biological activities and their targets of action.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/química , Complexos de Coordenação/química , Platina/química , Antineoplásicos/farmacologia , Anti-Infecciosos/farmacologia , Íons , Anti-Inflamatórios , Ligantes
14.
Chembiochem ; 24(14): e202300079, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853559

RESUMO

Clinical imaging techniques are widely used to detect, locate, and track the growth or shrinkage of cancerous tumors. Although these techniques have shown impressive results, they often come with health risks due to the use of toxic contrast agents or ionizing radiation. To address these limitations, research efforts have been focused on the development of new imaging techniques. Among the emerging medicinal methods, photoacoustic imaging is receiving much attention. This method effectively combines the most important benefits of both ultrasound and fluorescence imaging, while minimizing their respective drawbacks via a light-in and ultrasound-out approach. This review article focuses on the fundamental concept, recent advances, and strategies for novel contrast agents based on molecular metal complexes or metallic nanoparticles for use in photoacoustic imaging.


Assuntos
Complexos de Coordenação , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Meios de Contraste , Técnicas Fotoacústicas/métodos , Nanopartículas Metálicas/toxicidade , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem
15.
Chembiochem ; 24(19): e202300467, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37526951

RESUMO

The search for new metal-based photosensitizers (PSs) for anticancer photodynamic therapy (PDT) is a fast-developing field of research. Knowing that polymetallic complexes bear a high potential as PDT PSs, in this study, we aimed at combining the known photophysical properties of a rhenium(I) tricarbonyl complex and a ruthenium(II) polypyridyl complex to prepare a ruthenium-rhenium binuclear complex that could act as a PS for anticancer PDT. Herein, we present the synthesis and characterization of such a system and discuss its stability in aqueous solution. In addition, one of our complexes prepared, which localized in mitochondria, was found to have some degree of selectivity towards two types of cancerous cells: human lung carcinoma A549 and human colon colorectal adenocarcinoma HT29, with interesting photo-index (PI) values of 135.1 and 256.4, respectively, compared to noncancerous retinal pigment epithelium RPE1 cells (22.4).


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rênio , Rutênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Complexos de Coordenação/farmacologia
16.
Chembiochem ; 24(3): e202200588, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445805

RESUMO

The three-dimensional structure of a peptide, which determines its function, can denature at elevated temperatures, in the presence of chaotropic reagents, or in organic solvents. These factors limit the applicability of peptides. Herein, we present an engineered ß-hairpin peptide containing a His3 site that forms complexes with ZnII , NiII , and CuII . Circular dichroism spectroscopy shows that the peptide-metal complexes exhibit melting temperatures up to 80 °C and remain folded in 6 M guanidine hydrochloride as well as in organic solvents. Intrinsic fluorescence titration experiments were used to determine the dissociation constants of metal binding in the nano- to sub-nanomolar range. The coordination geometry of the peptide-CuII complex was studied by EPR spectroscopy, and a distorted square planar coordination geometry with weak interactions to axial ligands was revealed. Due to their impressive stability, the presented peptide-metal complexes open up interesting fields of application, such as the development of a new class of peptide-metal catalysts for stereoselective organic synthesis or the directed design of extremophilic ß-sheet peptides.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Zinco/química , Metais/química , Peptídeos/química , Espectroscopia de Ressonância de Spin Eletrônica , Cobre/química , Ligantes
17.
J Biol Inorg Chem ; 28(2): 117-138, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456886

RESUMO

Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.


Assuntos
Antineoplásicos , Complexos de Coordenação , Quadruplex G , Complexos de Coordenação/farmacologia , Ligantes , Antineoplásicos/farmacologia , DNA/química
18.
J Biol Inorg Chem ; 28(4): 355-378, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36856864

RESUMO

[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.


Assuntos
Estrutura Terciária de Proteína , Modelos Moleculares , Oxirredução , Oxigênio/química
19.
Chemistry ; 29(37): e202300447, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067464

RESUMO

Recently, there has been increasing interest in the design of ligands that bind Mn2+ with high affinity and selectivity, but this remains a difficult challenge. It has been proposed that the cavity size of the binding pocket is a critical factor in most synthetic and biological examples of selective Mn2+ binding. Here, we use a bioinspired approach adapted from the hexahistidine binding site of the manganese-sequestering protein calprotectin to systematically study the effect of cavity size on Mn2+ and Zn2+ binding. We have designed a hexadentate, trisimidazole ligand whose cavity size can be tuned through peripheral modification of the steric bulk of the imidazole substituents. Conformational dynamics and redox potentials of the complexes are dependent on ligand steric bulk. Stability constants are consistent with the hypothesis that larger ligand cavities are relatively favorable for Mn2+ over Zn2+ , but this effect alone may not be sufficient to achieve Mn2+ selectivity.

20.
Chemistry ; 29(45): e202301188, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37249243

RESUMO

Mononuclear copper(II)-phenanthroline complexes have been widely investigated as anticancer agents whereas multinuclear copper(II)-phenanthroline complexes are underexplored. Here the synthesis and characterisation of two new binuclear copper(II)-phenanthroline complexes 1 and 2 is reported, comprising of 2,9-dimethyl-1,10-phenanthroline or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, terminal chloride ligands, and bridging chloride or hydroxide ligands. The binuclear copper(II) complex containing 2,9-dimethyl-1,10-phenanthroline 1 displays nanomolar toxicity towards bulk breast cancer cells and breast cancer stem cells (CSCs) grown in monolayers, >50-fold greater than cisplatin (an anticancer metallodrug) and salinomycin (a gold-standard anti-CSC agent). Spectacularly, 1 exhibits >100-fold greater potency toward three-dimensionally cultured mammospheres than cisplatin and salinomycin. Mechanistic studies show that 1 evokes breast CSC apoptosis by elevating intracellular reactive oxygen species levels and damaging genomic DNA (possibly by an oxidative mechanism). To the best of our knowledge, this is the first study to probe the anti-breast CSC properties of binuclear copper(II)-phenanthroline complexes.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Humanos , Feminino , Cisplatino , Cobre , Fenantrolinas/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cloretos , Ligantes , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA