Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.488
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(6): 100782, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705386

RESUMO

Cellular communication within the brain is imperative for maintaining homeostasis and mounting effective responses to pathological triggers like hypoxia. However, a comprehensive understanding of the precise composition and dynamic release of secreted molecules has remained elusive, confined primarily to investigations using isolated monocultures. To overcome these limitations, we utilized the potential of TurboID, a non-toxic biotin ligation enzyme, to capture and enrich secreted proteins specifically originating from human brain pericytes in spheroid cocultures with human endothelial cells and astrocytes. This approach allowed us to characterize the pericyte secretome within a more physiologically relevant multicellular setting encompassing the constituents of the blood-brain barrier. Through a combination of mass spectrometry and multiplex immunoassays, we identified a wide spectrum of different secreted proteins by pericytes. Our findings demonstrate that the pericytes secretome is profoundly shaped by their intercellular communication with other blood-brain barrier-residing cells. Moreover, we identified substantial differences in the secretory profiles between hypoxic and normoxic pericytes. Mass spectrometry analysis showed that hypoxic pericytes in coculture increase their release of signals related to protein secretion, mTOR signaling, and the complement system, while hypoxic pericytes in monocultures showed an upregulation in proliferative pathways including G2M checkpoints, E2F-, and Myc-targets. In addition, hypoxic pericytes show an upregulation of proangiogenic proteins such as VEGFA but display downregulation of canonical proinflammatory cytokines such as CXCL1, MCP-1, and CXCL6. Understanding the specific composition of secreted proteins in the multicellular brain microvasculature is crucial for advancing our knowledge of brain homeostasis and the mechanisms underlying pathology. This study has implications for the identification of targeted therapeutic strategies aimed at modulating microvascular signaling in brain pathologies associated with hypoxia.


Assuntos
Hipóxia Celular , Técnicas de Cocultura , Pericitos , Esferoides Celulares , Pericitos/metabolismo , Humanos , Esferoides Celulares/metabolismo , Secretoma/metabolismo , Células Endoteliais/metabolismo , Astrócitos/metabolismo , Proteômica/métodos , Comunicação Celular , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Encéfalo/metabolismo , Espectrometria de Massas , Transdução de Sinais
2.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364992

RESUMO

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Vento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligases/metabolismo , Calmodulina/metabolismo
3.
J Biol Chem ; : 107588, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032654

RESUMO

Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression, but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multi-specificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates (K-BILDS) method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the K-BILDS method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.

4.
Plant J ; 118(1): 263-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38078656

RESUMO

Small RNAs play important roles in regulation of plant development and response to various stresses. Northern blot is an important technique in small RNA research. Isotope- and biotin- (or digoxigenin) labeled probes are frequently used in small RNA northern blot. However, isotope-based probe is limited by strict environmental regulation and availability in many places in the world while biotin-based probe is usually suffered from low sensitivity. In this study, we developed a T4 DNA polymerase-based method for incorporation of a cluster of 33 biotin-labeled C in small RNA probe (T4BC33 probe). T4BC33 probe reaches similar sensitivity as 32P-labeled probe in dot blot and small RNA northern blot experiments. Addition of locked nucleic acids in T4BC33 probe further enhanced its sensitivity in detecting low-abundance miRNAs. With newly developed northern blot method, expression of miR6027 and miR6149 family members was validated. Northern blot analysis also confirmed the successful application of virus-based miRNA silencing in pepper, knocking down accumulation of Can-miR6027a and Can-miR6149L. Importantly, further analysis showed that knocking-down Can-miR6027a led to upregulation of a nucleotide binding-leucine rich repeat domain protein coding gene (CaRLb1) and increased immunity against Phytophthora capsici in pepper leaves. Our study provided a highly sensitive and convenient method for sRNA research and identified new targets for genetic improvement of pepper immunity against P. capsici.


Assuntos
Capsicum , MicroRNAs , MicroRNAs/genética , Biotina , Northern Blotting , Isótopos , Capsicum/genética , Doenças das Plantas/genética
5.
Plant J ; 118(1): 7-23, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261530

RESUMO

The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Proteoma/metabolismo , Citosol/metabolismo , Biotinilação , Peroxissomos/metabolismo , Proteínas de Membrana/metabolismo
6.
Genomics ; 116(3): 110839, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537808

RESUMO

TurboID is a highly efficient biotin-labelling enzyme, which can be used to explore a number of new intercalating proteins due to the very transient binding and catalytic functions of many proteins. TGF-ß/Smad3 signaling pathway is involved in many diseases, especially in diabetic nephropathy and inflammation. In this paper, a stably cell line transfected with Smad3 were constructed by using lentiviral infection. To further investigate the function of TGF-ß/Smad3, the protein labeling experiment was conducted to find the interacting protein with Smad3 gene. Label-free mass spectrometry analysis was performed to obtain 491 interacting proteins, and the interacting protein hnRNPM was selected for IP and immunofluorescence verification, and it was verified that the Smad3 gene had a certain promoting effect on the expression of hnRNPM gene, and then had an inhibitory effect on IL-6. It lays a foundation for further study of the function of Smad3 gene and its involved regulatory network.


Assuntos
Proteína Smad3 , Proteína Smad3/metabolismo , Proteína Smad3/genética , Humanos , Células HEK293 , Interleucina-6/metabolismo , Interleucina-6/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Transdução de Sinais
7.
Semin Cell Dev Biol ; 132: 109-119, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35181195

RESUMO

Post-translational modifications of cellular substrates by members of the ubiquitin (Ub) and ubiquitin-like (UbL) family are crucial for regulating protein homeostasis in organisms. The term "ubiquitin code" encapsulates how this diverse family of modifications, via adding single UbLs or different types of UbL chains, leads to specific fates for substrates. Cancer, neurodegeneration and other conditions are sometimes linked to underlying errors in this code. Studying these modifications in cells is particularly challenging since they are usually transient, scarce, and compartment-specific. Advances in the use of biotin-based methods to label modified proteins, as well as their proximally-located interactors, facilitate isolation and identification of substrates, modification sites, and the enzymes responsible for writing and erasing these modifications, as well as factors recruited as a consequence of the substrate being modified. In this review, we discuss site-specific and proximity biotinylation approaches being currently applied for studying modifications by UbLs, highlighting the pros and cons, with mention of complementary methods when possible. Future improvements may come from bioengineering and chemical biology but even now, biotin-based technology is uncovering new substrates and regulators, expanding potential therapeutic targets to manipulate the Ub code.


Assuntos
Biotina , Ubiquitina , Ubiquitina/metabolismo , Biotina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
8.
J Proteome Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959414

RESUMO

Protein-protein interaction studies using proximity labeling techniques, such as biotin ligase-based BioID, have become integral in understanding cellular processes. Most studies utilize conventional 2D cell culture systems, potentially missing important differences in protein behavior found in 3D tissues. In this study, we investigated the protein-protein interactions of a protein, Bcl-2 Agonist of cell death (BAD), and compared conventional 2D culture conditions to a 3D system, wherein cells were embedded within a 3D extracellular matrix (ECM) mimic. Using BAD fused to the engineered biotin ligase miniTurbo (BirA*), we identified both overlapping and distinct BAD interactomes under 2D and 3D conditions. The known BAD binding proteins 14-3-3 isoforms and Bcl-XL interacted with BAD in both 2D and 3D. Of the 131 BAD-interactors identified, 56% were specific to 2D, 14% were specific to 3D, and 30% were common to both conditions. Interaction network analysis demonstrated differential associations between 2D and 3D interactomes, emphasizing the impact of the culture conditions on protein interactions. The 2D-3D overlap interactome encapsulated the apoptotic program, which is a well-known role of BAD. The 3D unique pathways were enriched in ECM signaling, suggestive of hitherto unknown functions for BAD. Thus, exploring protein-protein interactions in 3D provides novel clues into cell behavior. This exciting approach has the potential to bridge the knowledge gap between tractable 2D cell culture and organoid-like 3D systems.

9.
J Biol Chem ; 299(8): 104948, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354974

RESUMO

Regulated protein degradation in eukaryotes is performed by the 26S proteasome, which contains a 19-subunit regulatory particle (RP) that binds, processes, and translocates substrates to a 28-subunit hollow core particle (CP) where proteolysis occurs. In addition to its intrinsic subunits, myriad proteins interact with the proteasome transiently, including factors that assist and/or regulate its degradative activities. Efforts to identify proteasome-interacting components and/or to solve its structure have relied on over-expression of a tagged plasmid, establishing stable cell lines, or laborious purification protocols to isolate native proteasomes from cells. Here, we describe an engineered human cell line, derived from colon cancer HCT116 cells, with a biotin handle on the RP subunit hRpn1/PSMD2 (proteasome 26S subunit, non-ATPase 2) for purification of 26S proteasomes. A 75-residue sequence from Propionibacterium shermanii that is biotinylated in mammalian cells was added following a tobacco etch virus protease cut site at the C terminus of hRpn1. We tested and found that 26S proteasomes can be isolated from this modified HCT116 cell line by using a simple purification protocol. More specifically, biotinylated proteasomes were purified from the cell lysates by using neutravidin agarose resin and released from the resin following incubation with tobacco etch virus protease. The purified proteasomes had equivalent activity in degrading a model ubiquitinated substrate, namely ubiquitinated p53, compared to commercially available bovine proteasomes that were purified by fractionation. In conclusion, advantages of this approach to obtain 26S proteasomes over others is the simple purification protocol and that all cellular proteins, including the tagged hRpn1 subunit, remain at endogenous stoichiometry.


Assuntos
Técnicas Citológicas , Complexo de Endopeptidases do Proteassoma , Animais , Bovinos , Humanos , Linhagem Celular , Citoplasma/metabolismo , Mamíferos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Técnicas Citológicas/métodos
10.
J Biol Chem ; 299(10): 105257, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716702

RESUMO

RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method. Using our newly developed microplate assay, we observed no significant difference in the catalytic constants of the full-length nonstructural protein 5 enzyme and the truncated MTase domain. These data suggest that, unlike the Zika virus RNA-dependent RNA polymerase activity, the MTase activity is unaffected by RNA-dependent RNA polymerase-MTase interdomain interaction. Given its quantitative nature and accuracy, this method can be used to characterize various RNA MTases, and, therefore, significantly contribute to the field of epitranscriptomics and drug development against infectious diseases.


Assuntos
Bioensaio , Metiltransferases , Desenvolvimento de Medicamentos , Metiltransferases/metabolismo , RNA , RNA Polimerase Dependente de RNA/metabolismo , Zika virus/enzimologia , Perfilação da Expressão Gênica , Epigênese Genética , Bioensaio/métodos , Biotinilação , Estrutura Terciária de Proteína
11.
Chembiochem ; 25(6): e202300746, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081789

RESUMO

A complex code of cellular signals is mediated by ubiquitin and ubiquitin-like (Ub/UbL) modifications on substrate proteins. The so-called Ubiquitin Code specifies protein fates, such as stability, subcellular localization, functional activation or suppression, and interactions. Hundreds of enzymes are involved in placing and removing Ub/UbL on thousands of substrates, while the consequences of modifications and the mechanisms of specificity are still poorly defined. Challenges include rapid and transient engagement of enzymes and Ub/UbL interactors, low stoichiometry of modified versus non-modified cellular substrates, and protease-mediated loss of Ub/UbL in lysates. To decipher this complexity and confront the challenges, many tools have been created to trap and identify substrates and interactors linked to Ub/UbL modification. This review focuses on an assortment of biotin-based tools developed for this purpose (for example BioUbLs, UbL-ID, BioE3, BioID), taking advantage of the strong affinity of biotin-streptavidin and the stringent lysis/washing approach allowed by it, paired with sensitive mass-spectrometry-based proteomic methods. Knowing how substrates change during development and disease, the consequences of substrate modification, and matching substrates to particular UbL-ligating enzymes will contribute new insights into how Ub/UbL signaling works and how it can be exploited for therapies.


Assuntos
Biotina , Ubiquitina , Ubiquitina/metabolismo , Proteômica , Peptídeo Hidrolases
12.
J Membr Biol ; 257(1-2): 91-105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289568

RESUMO

Plasma membrane proteins (PMPs) play pivotal roles in various cellular events and are crucial in disease pathogenesis, making their comprehensive characterization vital for biomedical research. However, the hydrophobic nature and low expression levels of PMPs pose challenges for conventional enrichment methods, hindering their identification and functional profiling. In this study, we presented a novel TurboID-based enrichment approach for PMPs that helped overcoming some of the existing limitations. We evaluated the efficacy of TurboID and its modified form, TurboID-START, in PMP enrichment, achieving efficient and targeted labelling of PMPs without the need for stable cell line generation. This approach resulted reduction in non-specific biotinylation events, leading to improved PMP enrichment and enabled assessment of the subcellular proteome associated with the plasma membrane. Our findings paved the way for studies targeting the dynamic nature of the plasma membrane proteome and aiming to capture transient associations of proteins with the plasma membrane. The novel TurboID-based enrichment approach presented here offers promising prospects for in-depth investigations into PMPs and their roles in cellular processes.


Assuntos
Biotina , Proteoma , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Biotina/metabolismo , Biotinilação , Proteínas de Membrana/metabolismo , Ligases/metabolismo
13.
Chemistry ; 30(28): e202400438, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470414

RESUMO

A novel approach has been developed for the synthesis of bicyclic ß, γ-fused bicyclic γ-ureasultams containing two consecutive chiral centers through an intramolecular Mannich and aza-Michael addition cascade of alkenyl sulfamides. The straightforward practical procedure and readily available starting materials enable the synthesis of variously substituted ureasultams. In addition, bicyclic γ-ureasultams is a class of potential biotin analogues.

14.
Chemistry ; : e202400858, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887133

RESUMO

A range of novel BODIPY derivatives with a tripodal aromatic core was synthesized and characterized spectroscopically. These new fluorophores showed promising features as probes for in vitro assays in live cells and offer strategic routes for further functionalization towards hybrid nanomaterials. Incorporation of biotin tags facilitated proof-of-concept access to targeted bioconjugates as molecular probes. Computational explorations using DFT and TD-DFT calculations identified the most stable tripodal linker conformations and predicted their absorption and emission behavior. The uptake and speciation of these molecules in living prostate cancer cells was imaged by single- and two-photon excitation techniques coupled with two-photon fluorescence lifetime imaging (2P FLIM).

15.
Anal Biochem ; 691: 115543, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636731

RESUMO

Cancer development and progression are intimately related with post-translational protein modifications, e.g., highly reactive thiol moiety of cysteines enables structural rearrangements resulting in redox biological switches. In this context, redox proteomics techniques, such as 2D redox DIGE, biotin switch assay and OxIcat are fundamental tools to identify and quantify redox-sensitive proteins and to understand redox mechanisms behind thiol modifications. Given the great variability in redox proteomics protocols, problems including decreased resolution of peptides and low protein amounts even after enrichment steps may occur. Considering the biological importance of thiol's oxidation in melanoma, we adapted the biotin-switch assay technique for melanoma cells in order to overcome the limitations and improve coverage of detected proteins.


Assuntos
Biotina , Melanoma , Oxirredução , Proteômica , Proteômica/métodos , Melanoma/metabolismo , Melanoma/patologia , Humanos , Linhagem Celular Tumoral , Biotina/química , Biotina/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
16.
Transfusion ; 64(5): 800-807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506450

RESUMO

BACKGROUND: Red blood cell (RBC) antibodies are common in multiply transfused patients with sickle cell disease (SCD). Unlike RBC alloantibodies, the potential of autoantibodies to cause post-transfusion hemolysis may be uncertain. Biotin-labeling provides a direct measurement of red cell survival (RCS) over time, thus can be used to assess the clinical significance of RBC antibodies. Antibodies to biotinylated RBC (B-RBC) occasionally are detected after exposure, which may impact B-RBC survival in subsequent RCS studies. STUDY DESIGN AND METHODS: Pediatric patients with SCD receiving monthly chronic transfusions underwent RCS studies, receiving aliquots of allogeneic RBC labeled at distinct densities of biotin (2-18 µg/mL). B-RBC survival was followed for 4 months post-transfusion, and B-RBC antibody screening for 6 months. Patients with warm autoantibodies (WAA) or B-RBC antibodies are reported here. RESULTS: RBC antibodies were detected during RCS in four patients: one with WAA, one with WAA followed by B-RBC-specific antibodies, and two with transient B-RBC antibodies within the first 5 weeks of exposure. B-RBC half-lives (T50) ranged 37.6-61.7 days (mean 47.8 days). There was no evidence of increased hemolysis or accelerated B-RBC clearance in the presence of WAA or B-RBC antibodies. DISCUSSION: Biotinylation of allogenic RBC can be used to assess the possible effects of RBC antibodies on transfusion survival in individual cases, particularly when it is uncertain if the detected antibodies may result in hemolysis. In the cases presented here, neither WAA nor B-RBC antibodies were associated with significant shortening of B-RBC survival in individuals with SCD.


Assuntos
Anemia Falciforme , Autoanticorpos , Biotina , Transfusão de Eritrócitos , Eritrócitos , Humanos , Anemia Falciforme/imunologia , Anemia Falciforme/sangue , Anemia Falciforme/terapia , Eritrócitos/imunologia , Criança , Autoanticorpos/sangue , Autoanticorpos/imunologia , Transfusão de Eritrócitos/efeitos adversos , Masculino , Adolescente , Feminino , Sobrevivência Celular , Biotinilação , Pré-Escolar , Isoanticorpos/sangue , Isoanticorpos/imunologia , Hemólise/imunologia
17.
Microb Cell Fact ; 23(1): 135, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735926

RESUMO

Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.


Assuntos
Biotina , Engenharia Metabólica , Biotina/biossíntese , Biotina/metabolismo , Engenharia Metabólica/métodos , Biologia Sintética/métodos
18.
Bioorg Med Chem Lett ; 108: 129803, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38777280

RESUMO

Targeted delivery of radionuclides to tumors is significant in theranostics applications for precision medicine. Pre-targeting, in which a tumor-targeting vehicle and a radionuclide-loaded effector small molecule are administered separately, holds promise since it can reduce unnecessary internal radiation exposure of healthy cells and can minimize radiation decay. The success of the pre-targeting delivery requires an in vivo-stable tumor-targeting vehicle selectively binding to tumor antigens and an in vivo-stable small molecule effector selectively binding to the vehicle accumulated on the tumor. We previously reported a drug delivery system composed of a low-immunogenic streptavidin with weakened affinity to endogenous biotin and a bis-iminobiotin with high affinity to the engineered streptavidin. It was, however, unknown whether the bis-iminobiotin is stable in vivo when administered alone for the pre-targeting applications. Here we report a new in vivo-stable bis-iminobiotin derivative. The keys to success were the identification of the degradation site of the original bis-iminobiotin treated with mouse plasma and the structural modification of the degradation site. We disclosed the successful pre-targeting delivery of astatine-211 (211At), α-particle emitter, to the CEACAM5-positive tumor in xenograft mouse models.


Assuntos
Biotina , Estreptavidina , Animais , Estreptavidina/química , Camundongos , Biotina/química , Humanos , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral , Mutação , Estrutura Molecular
19.
Bioorg Chem ; 150: 107600, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945086

RESUMO

In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.


Assuntos
Biotina , Estreptavidina , Enxofre , Biotina/química , Estreptavidina/química , Estrutura Molecular , Enxofre/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Ligação de Hidrogênio
20.
Artigo em Inglês | MEDLINE | ID: mdl-38770738

RESUMO

Streptavidin is a tetrameric protein with high specificity and affinity for biotin. The interaction between avidin and biotin has become a valuable tool in nanotechnology. In recent years, the site-specific biotin modification of proteins using biotin ligases, such as BirA, has attracted attention. This study established an in vivo method for achieving the complete biotinylation of target proteins using a single plasmid co-expressing BirA and its target proteins. Specifically, a biotin-modified protein was produced in Escherichia coli strain BL21(DE3) using a single plasmid containing genes encoding both BirA and a protein fused to BirA's substrate sequence, Avitag. This approach simplifies the production of biotinylated proteins in E. coli and allows the creation of various biotinylated protein types through gene replacement. Furthermore, the biotin modification rate of the obtained target protein could be evaluated using Native-PAGE without performing complicated isolation operations of biotinylated proteins. In Native-PAGE, biotin-modified proteins and unmodified proteins were confirmed as clearly different bands, and it was possible to easily derive the modification rate from the respective band intensities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA