Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0013324, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624228

RESUMO

A 2-year national genomic screening in the Czech Republic identified a notable prevalence of the New Delhi metallo-ß-lactamase 5 (NDM-5)-producing Escherichia coli sequence type 38 (ST38) in the city of Brno. Forty-two ST38 E. coli isolates harbored the blaNDM-5 gene on the chromosome. Virulence factors confirmed the persistence of these isolates through biofilm formation. Single Nucleotide Polymorphisms (SNPs)-based phylogeny and CRISPR assay typing showed minimal genomic variations, implying a clonally driven outbreak. Results suggest that this high-risk clone may impose a nationwide problem.

2.
Appl Environ Microbiol ; 88(8): e0245721, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389252

RESUMO

We retrospectively investigated 326 samples that were collected from goose farms in Hainan Province, China, in 2017. A total of 33 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates were identified from 326 samples, and the 33 CRKP isolates were characterized based on whole-genome sequencing (WGS) data from the Illumina and Oxford Nanopore Technologies (ONT) platforms. All of these 33 CRKP isolates possessed blaNDM-5, and a single isolate coharbored mcr-1 and blaNDM-5, while 4 isolates carried multiple virulence and metal tolerance gene clusters. One CRKP strain (CMG-35-2) was selected for long sequence reading. A hybrid plasmid carrying the virulence, resistance, and metal resistance gene in the strain was found. It possessed 2 backbones [IncFIB(K)-IncFII(K)] within a single plasmid that were closely related to K. pneumoniae plasmids from a human-associated habitat in the United States and from a human isolate in Hong Kong. A mouse abdominal infection model indicated that that strain was of the moderate virulence phenotype. This study revealed that K. pneumoniae on goose farms is an important reservoir for blaNDM-5 and these bacteria are represented by a diversity of sequence types. The heterozygous multiple drug resistance genes carried on plasmids highlighted the genetic complexity of CRKP and the urgent need for continued active surveillance. IMPORTANCE CRKP is one of the most important pathogens, which can cause infection not only in humans but also in waterfowl. The discovery of blaNDM-5-producing K. pneumoniae in waterfowl farms in recent years suggests that waterfowl are an important reservoir for blaNDM-5-producing Enterobacteriaceae. However, there are few studies on the spread of blaNDM-5-producing bacteria in waterfowl farms. Our study showed that the IncX3 plasmid carrying blaNDM-5 in goose farms is widely present in K. pneumoniae isolates and a large number of resistance genes are accumulated in it. We found a transferable IncFIB-FII hybrid plasmid that combines virulence, resistance, and metal resistance genes, which allow transfer of these traits between bacteria in different regions. The results of this study contribute to a better understanding of the prevalence and transmission of carbapenem-resistant K. pneumoniae in goose farms.


Assuntos
Antibacterianos , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Carbapenêmicos , Farmacorresistência Bacteriana/genética , Fazendas , Gansos , Camundongos , Estudos Retrospectivos , Virulência/genética , beta-Lactamases/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-30038045

RESUMO

A total of 108 meropenem-resistant Enterobacteriaceae isolates were obtained from 1,658 rectal swabs collected from 15 unrelated commercial chicken farms in China between 2014 and 2016. These samples yielded 16 Escherichia coli and 2 Klebsiella pneumoniae isolates of diverse sequence types carrying a blaNDM-5-bearing IncX3 plasmid. K. pneumoniae strain sequence type 709 (ST709) has two blaNDM-5-carrying plasmids that were transferred together to E.coli.


Assuntos
Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Animais , Galinhas , China , Fazendas , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-27993847

RESUMO

Sixteen different sequence types (STs) of Escherichia coli isolates from a commercial swine farm in China were confirmed to coharbor the carbapenem resistance gene blaNDM-5 and the colistin resistance gene mcr-1 Whole-genome sequencing revealed that blaNDM-5 and mcr-1 were located on a 46-kb IncX3 plasmid and a 32-kb IncX4 plasmid, respectively. The two plasmids can transfer together with a low fitness cost, which might explain the presence of various STs of E. coli coharboring blaNDM-5 and mcr-1.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Doenças dos Suínos/epidemiologia , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , China/epidemiologia , Colistina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Transferência Genética Horizontal , Aptidão Genética , Genótipo , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Suínos , Doenças dos Suínos/microbiologia , beta-Lactamases/metabolismo
5.
Indian J Microbiol ; 56(2): 182-189, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27570310

RESUMO

Emergence of antimicrobial resistance mediated through New Delhi metallo-ß-lactamases (NDMs) is a serious therapeutic challenge. Till date, 16 different NDMs have been described. In this study, we report the molecular and structural characteristics of NDM-5 isolated from an Escherichia coli isolate (KOEC3) of bovine origin. Using PCR amplification, cloning and sequencing of full blaNDM gene, we identified the NDM type as NDM-5. Cloning of full gene in E. coli DH5α and subsequent assessment of antibiotic susceptibility of the transformed cells indicated possible role of native promoter in expression blaNDM-5. Translated amino acid sequence had two substitutions (Val88Leu and Met154Leu) compared to NDM-1. Theoretically deduced isoelectric pH of NDM-5 was 5.88 and instability index was 36.99, indicating a stable protein. From the amino acids sequence, a 3D model of the protein was computed. Analysis of the protein structure elucidated zinc coordination and also revealed a large binding cleft and flexible nature of the protein, which might be the reason for broad substrate range. Docking experiments revealed plausible binding poses for five carbapenem drugs in the vicinity of metal ions. In conclusion, results provided possible explanation for wide range of antibiotics catalyzed by NDM-5 and likely interaction modes with five carbapenem drugs.

7.
Front Cell Infect Microbiol ; 14: 1407246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962322

RESUMO

Introduction: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Carbapenêmicos , Ceftazidima , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Klebsiella pneumoniae , Sequenciamento Completo do Genoma , beta-Lactamases , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , Humanos , Líbano , beta-Lactamases/genética , beta-Lactamases/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Transferência Genética Horizontal , Genoma Bacteriano , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Centros de Atenção Terciária
8.
Infect Drug Resist ; 17: 1781-1790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736433

RESUMO

Carbapenem-resistant Salmonella enterica (S. enterica) pose a significant threat to public health, causing gastroenteritis and invasive infections. We report the first emergence of a carbapenem-resistant S. enterica serovar London strain, A132, carrying the blaNDM-5 gene in China. Whole-genome sequencing and bioinformatics analysis assigned A132 to be ST155, a multidrug-resistant clone frequently reported in China. The strain A132 exhibited resistance to multiple antibiotics, with 20 acquired antibiotic resistance genes (ARGs) identified, predominantly located on the IncFIB plasmid (pA132-1-NDM). Notably, the blaNDM-5 gene was located within an IS26 flanked-class 1 integron-ISCR1 complex, comprising two genetic cassettes. One cassette is the class 1 integron, which may facilitate the transmission of the entire complex, while the other is the blaNDM-5-containing ISCR1-IS26-flanked cassette, carrying multiple other ARGs. Genbank database search based on the blaNDM-5-carrying cassette identified a similar genetic context found in transmissible IncFIA plasmids from Escherichia coli (p91) and Enterobacter hormaechei (p388) with a shared host range, suggesting the potential for cross-species transmission of blaNDM-5. To our knowledge, this is the first reported case of Salmonella serovar London ST155 harboring blaNDM-5 gene. Phylogenetic analysis indicated a close relationship between A132 and eight S. London ST155 strains isolated from the same province. However, A132 differed by carrying the blaNDM-5 gene and four unique ARGs. Given the high transmissibility of the F-type plasmid harboring blaNDM-5 and 18 other ARGs, it is imperative to implement vigilant surveillance and adopt appropriate infection control measures to mitigate the threat to public health.

9.
Microb Drug Resist ; 30(4): 153-163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150703

RESUMO

Tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant pathogens, especially carbapenem-resistant Enterobacterales and Acinetobacter in recent years. The emergence of antibiotic-resistant bacteria and antibiotic-resistant genes has threatened the effectiveness of antibiotics and public health with the excessive use of antibiotics in clinics. However, the emergence and dissemination of high-level mobile tigecycline-resistance gene tet(X) is challenging for clinical effectiveness of antimicrobial agent. This study aimed to characterize an E. coli strain T43, isolated from an inpatient in a teaching hospital in China. The E. coli T43 was resistant to almost all antimicrobials except colistin and consisted of a 4,774,080 bp chromosome and three plasmids. Plasmids pT43-1 and pT43-2 contained tigecycline-resistance gene tet(X4). Plasmid pT43-1 had a size of 152,423 bp with 51.05% GC content and harbored 151 putative open reading frames. pT43-1 was the largest plasmid in strain T43 and carried numerous resistance genes, especially tigecycline resistance gene tet(X4) and carbapenemase resistance gene blaNDM-5. The tet(X) gene was associated with IS26. Co-occurrence of numerous resistance genes in a single plasmid possibly contributed to the dissemination of these genes under antibiotics stress. It might explain the presence of clinically crucial resistance genes tet(X) and blaNDM-5 in clinics. This study suggested the applicable use of antibiotics and continued surveillance of tet(X) and blaNDM-5 in clinics are imperative.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Pacientes Internados , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , China
10.
Microb Drug Resist ; 30(1): 27-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150122

RESUMO

Background: Around the world, carbapenemase-producing Escherichia coli is becoming more prevalent. The purpose of this research was to analyze the whole plasmid sequences from YL03 isolates of the E. coli strain that produce both KPC-2 and NDM-5 carbapenemases. Materials and Methods: Whole-genome sequencing (WGS) and analysis of E. coli strain YL03, which was isolated from a wound sample, was performed by Illumina Novaseq 6000 and Pacific Biosciences Sequel (PacBio, Menlo Park, CA) sequencers. Following that, the WGS results were used to predict and analyze the YL03 genome composition and function. A complete gene sequence for YL03 with the accession number CP093551 has been uploaded to GenBank. Results: The results showed that YL03 co-carried five resistance genes, which included blaKPC-2, blaNDM-5, blaTEM-1B, blaCTX-M-14, and mdf(A). Furthermore, three resistance plasmids were found in YL03: pYL03-KPC, pYL03-NDM, and pYL03-CTX. Among them, the 53 kb-long pYL03-KPC plasmid belonging to the IncP, carried the replicase gene (repA) and the carbapenemase gene (blaKPC-2). The blaKPC-2 gene was flanked by a composite transposon-like element (Tn3-[Tn3] tnpR-ISKpn27 blaKPC--ISKpn6). Conclusions: The YL03 strain co-carried blaKPC-2 and blaNDM-5 and had a unique multidrug resistance plasmid containing blaKPC-2.


Assuntos
Proteínas de Bactérias , Escherichia coli , Antibacterianos/farmacologia , beta-Lactamases/genética , Elementos de DNA Transponíveis , Escherichia coli/genética , Genômica , Hospitais , Unidades de Terapia Intensiva , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética
11.
Front Microbiol ; 14: 1116413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007493

RESUMO

The coexistence of mcr-1 and bla NDM-5 in the plasmid of Escherichia coli has been widely reported and such strains have been mainly isolated from animal and human feces. However, few reports have focused on the genetic diversity of mcr-1-carrying chromosomes and bla NDM-5-carrying plasmids in E. coli isolates from lesion-bearing animal organs. This study investigated the genetic characteristics of chromosome-mediated mcr-1 and plasmid-mediated bla NDM-5 in E. coli isolated from lesion-bearing animal organs. Nine mcr-1- and bla NDM-5-positive E. coli strains (MNPECs) showed extensive drug resistance (XDR). The predominant clonal complexes (CC) mainly belonged to CC156, CC10, and CC165 from the 56 MNEPCs (including nine strains in this study) retrieved from the literature. These strains were widely distributed in China, and originated from pig fecal samples, human stool/urine samples as well as intestinal contents of chicken. Two transconjugants harboring bla NDM-5 gene were also successfully obtained from two donors (J-8 and N-14) and this transfer increased the MIC for meropenem by 256 times. However, conjugative transfer of mcr-1 gene failed. Both J-8 and N-14 strains contained point mutations associated with quinolone resistance and more than three types of AMR genes, including the mcr-1 gene on the chromosome and the bla NDM-5 gene on the IncX3-type plasmid. The genetic structure of mcr-1 located on the chromosome was an intact Tn6330, and bla NDM-5-carrying IncX3-type plasmid was ISAb125-IS5-bla NDM-5-bleO-trpF-tat-cutA-IS26 gene cassette. Moreover, differences between chromosomes included additional partial sequence of phage integrated into host genome and the different genes associated with O-antigen synthesis.

12.
Infect Drug Resist ; 16: 5965-5976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705515

RESUMO

Introduction: New Delhi metallo-ß-lactamase (NDM)-producing K. pneumoniae poses a high risk, especially among Egyptian pediatric patients who consume carbapenems antibiotics very widely and without adequate diagnostic sources. In addition, presence of efflux pump genes such as OqxAB increases resistance against many groups of antimicrobials which exacerbates the problem faced for human health. This study aimed to determine NDM variants among K. pneumoniae strains isolated from pediatric patients in Egypt, analyze the presence of OqxAB genes, and molecular characterization of blaNDM-5-positive K. pneumoniae. Methods: Fifty-six K. pneumoniae isolates were recovered from pediatric patients, and tested for carbapenemase by modified carbapenem inactivation methods (mCIM) test. Minimum inhibitory concentrations of meropenem and colistin were determined by meropenem E-test strips and broth microdilution, respectively. PCR was used for the detection of the resistant genes (ESBL gene (blaCTX-M), carbapenemase genes (blaNDM, blaKPC) colistin resistant (mcr1, mcr2)) and genes for efflux pump (oqxA and oqxB). BlaNDM was sequenced. The effect of efflux pump in NDM-5-producing isolates was assessed by measuring MIC of ciprofloxacin and meropenem before and after exposure to the carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The horizontal gene transfer ability of blaNDM-5 was determined using liquid mating assay and PCR-based replicon typing (PBRT) was done to determine the major plasmid incompatibility group. Results: Twenty-nine isolates were positive for blaNDM-1, nine isolates were positive for blaNDM-5, and 15 isolates were positive for blaKPC. There is a significant increase of meropenem MIC of NDM-5-positive isolates compared with NDM-1-positive isolates. In addition, 38 isolates were positive for CTX-M, and 15 isolates were positive for mcr1. Both OqxA and OqxB were detected in 26 isolates and 13 isolates were positive for OqxA while 11 isolates were positive for OqxB only. All NDM-5-producing isolates except one isolate could transfer their plasmids by conjugation to their corresponding transconjugants (E. coli J53). Plasmid replicon typing showed that FII was predominant in NDM-5-producing K. pneumoniae. Similar strains were found between the three isolates and similarity was also detected between the two isolates. Conclusion: The highly resistant K. pneumoniae producing blaNDM-5 type was firstly isolated from pediatric patients. The association of efflux pump genes such as OqxAB is involved in resistance to ciprofloxacin. This highlighted the severity risk of blaNDM-5-positive K. pneumonia as it could transfer blaNDM-5 to other bacteria and has more resistance against carbapenems. This underlines the importance of continuous monitoring of infection control guidelines, and the urgent need for a national antimicrobial stewardship plan in Egyptian hospitals.

13.
mSphere ; 8(6): e0048023, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37909767

RESUMO

IMPORTANCE: In this study, an IncFII plasmid pIncFII-NDM5 carrying blaNDM-5 was found in carbapenem-resistant Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium), which has conjugative transferability and carried blaNDM-5, bleMBL, mph(A), and blaTEM-1 four resistance genes that can mediate resistance to multiple antibiotics including cephalosporins, beta-lactamase inhibitor combinations, carbapenems, and macrolides. Phylogenetic analysis showed that 1104-65 and 1104-75 were closely related to other S. enterica serovar Typhimurium in this area. The above-mentioned S. enterica serovar Typhimurium chromosome carries blaCTX-M-55, qnrS1, and tet(A) genes, so the antibiotic resistance of isolates will be further enhanced after obtaining the pIncFII_NDM5-like plasmid. Meanwhile, we discovered a novel genetic structure of blaNDM-5 mediated by the IS26 composite transposon, which will expand our understanding of the emergence and spread of carbapenem-resistance genes. Altogether, the presence of the IncFII plasmid pIncFII-NDM5 further underscores the need for vigilant surveillance and appropriate infection control measures to mitigate the impact of carbapenem-resistant S. enterica serovar Typhimurium in clinical settings.


Assuntos
Farmacorresistência Bacteriana Múltipla , Salmonella typhimurium , Salmonella typhimurium/genética , Sorogrupo , Filogenia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Plasmídeos/genética , Carbapenêmicos/farmacologia
14.
Infect Drug Resist ; 16: 5077-5084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576518

RESUMO

Purpose: The E. coli ST167 clone is the globally dominant ST among extraintestinal pathogenic E. coli (ExPEC) and is frequently associated with carbapenem resistance. This study reports genomic characterization of a pandrug-resistant E. coli ST167 isolate (ECO3183) and the possibility of the type strains' transmission. Materials and Methods: Antibiotic susceptibility testing was performed using disk diffusion and the VITEK 2 automated system. The E. coli ECO3183 genome was sequenced. We used the genome to analyze the phylogenetic relationship, phylogenetic group, sequence type (ST), acquired antibiotic resistance genes (ARGs), IS elements, genomics islands, the replicon type and transferability of the plasmids. The conjugative transfer of plasmids was assessed using filter mating experiments. Results: ECO3183 contained a 4.87-Mb chromosome and two plasmids [pECO3183-1 (167.63 Kb) and pECO3183-2 (46.16 Kb)]. It belonged to phylogenetic group A, clonal complex 10 (CC10), and ST167. ECO3183 is a pandrug-resistant strain nonsusceptible to 24 tested antimicrobials representing 8 different antimicrobial classes. Among 55 E. coli isolates phylogenetically related to ECO3183, 47% (26/55) were from humans, while 35% (19/55) were from animals. Further analysis revealed that among 1140 ST167 isolates (in the EnteroBase database), 4% (47/1140) originated from environments, 17% (192/1140) were isolated from humans, and 78% (890/1140) were obtained from animals. The pECO3183-1 contained two identical repeats of a 9633 bp region (IS6100-sul1-ΔaadA16-dfrA27-arr-3-aac(6')-Ib-cr-IS26) and a 17.88-kb resistance island (sul2-aph(3″)-Ib-aph(6)-Id-IS26-Δaph(3')-Ia-IS26-tet(A)-ΔfloR-ΔISVsa3-IS26-Δaac(3)-IId-IS26-mph(A)), and these three regions contained most of ECO3183 carrying ARGs. It was identified as a conjugative plasmid, which confers MDR resistance and has the potential to spread. Conclusion: ECO3183 exhibited pandrug-resistance phenotype that was mediated by pECO3183-1 carrying MDR ARGs and pECO3183-2 carrying blaNDM-5. Source analysis of strains indicated that ST167 E. coli might be transmitted between species from animals to humans, which needs continued monitoring.

15.
Zool Res ; 44(5): 894-904, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37551137

RESUMO

Conjugative transfer of antibiotic resistance genes (ARGs) by plasmids is an important route for ARG dissemination. An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs, highlighting potential challenges for controlling this type of horizontal transfer. Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance. Although such inhibitors are rare, they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood. Here, we studied the effects of dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, on conjugation. DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene ( mcr-1) by more than 160-fold in vitro in Escherichia coli, and more than two-fold (IncI2 plasmid) in vivo in a mouse model. It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla NDM-5 by more than two-fold in vitro. Detection of intracellular adenosine triphosphate (ATP) and proton motive force (PMF), in combination with transcriptomic and metabolomic analyses, revealed that DHA impaired the function of the electron transport chain (ETC) by inhibiting the tricarboxylic acid (TCA) cycle pathway, thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer. Furthermore, expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure, indicating that the transfer apparatus for conjugation may be inhibited. Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.


Assuntos
Infecções por Escherichia coli , Camundongos , Animais , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , beta-Lactamases/genética , Antibacterianos/farmacologia , Plasmídeos/genética
16.
3 Biotech ; 13(5): 139, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37124981

RESUMO

In this study, we described the carbapenem bla NDM-5-carrying extensive drug-resistant (XDR) K. pneumoniae ST437 from an urban river water Kathajodi in Odisha, India. The presence of carbapenem and co-occurrence of other resistance determinants (bla NDM-5, bla CTX-M, bla SHV, and bla TEM), virulence factors (fimH, mrkD, entB, irp-1, and ybtS), and capsular serotype (K54) represent its pathogenic potential. The insertion sequence ISAba125 and the bleomycin resistance gene ble MBL at upstream and downstream, respectively, could play a significant role in the horizontal transmission of the bla NDM-5. Its biofilm formation ability contributes toward environmental protection and its survivability. MLST analysis assigned the isolate to ST437 and clonal lineage to ST11 (CC11) with a single locus variant. The ST437 K. pneumoniae, a global epidemic clone, has been reported in North America, Europe, and Asia. This work contributes in understanding of the mechanisms behind the spread of bla NDM-5 K. pneumoniae ST437 and demands extensive molecular surveillance of river and nearby hospitals for better community health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03556-5.

17.
Infect Drug Resist ; 16: 7621-7628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107435

RESUMO

Purpose: We aimed to characterize a novel blaNDM-5 and blaKPC-2 co-carrying hybrid plasmid from a clinical carbapenem-resistant Klebsiella pneumoniae (CRKP) strain. Methods: Antimicrobial susceptibility was determined by the broth microdilution method. Plasmid size and localization were estimated using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Plasmid transfer ability was evaluated by conjugation experiments. Whole genome sequencing (WGS) was performed using Illumina NovaSeq6000 and Oxford Nanopore MinION platforms. Genomic characteristics were analyzed using bioinformatics methods. Results: Strain ZY27320 was a multidrug-resistant (MDR) clinical ST11 K. pneumoniae strain that confers high-level resistance to carbapenems (meropenem, MIC 128 mg/L; imipenem, MIC 64 mg/L) and ceftazidime/avibactam (MIC >128/4 mg/L). Both S1-PFGE-Southern blotting and whole genome sequencing revealed that the carbapenemase genes blaKPC-2 and blaNDM-5 were carried by the same IncFIIpHN7A8:IncR:IncN hybrid plasmid (pKPC2_NDM5). Conjugation experiments indicated that pKPC2_NDM5 was a non-conjugative plasmid. Conclusion: This is the first report of a hybrid plasmid carrying both carbapenemase genes blaNDM-5 and blaKPC-2 in a clinical K. pneumoniae ST11 isolate that confers resistance to both ceftazidime/avibactam and carbapenems, thereby presenting a serious threat to treatment in clinical practice.

18.
Zool Res ; 43(2): 255-264, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35194984

RESUMO

We aimed to characterize NDM-5-producing Enterobacteriaceae from aquatic products in Guangzhou, China. A total of 196 intestinal samples of grass carp collected in 2019 were screened for carbapenemase genes. Characterization of bla NDM-5 positive isolates and plasmids was determined by antimicrobial susceptibility testing, conjugation experiments, Illumina HiSeq, and Nanopore sequencing. One Citrobacter freundii and six Escherichia coli strains recovered from seven intestinal samples were verified as bla NDM-5 carriers (3.57%, 7/196). The bla NDM-5 genes were located on the IncX3 ( n=5), IncHI2 ( n=1), or IncHI2-IncF ( n=1) plasmids. All bla NDM-5-bearing plasmids were transferred by conjugation at frequencies of ~10 -4-10 -6. Based on sequence analysis, the IncHI2 plasmid pHNBYF33-1 was similar to other bla NDM-5-carrying IncHI2 plasmids deposited in GenBank from Guangdong ducks. In all IncHI2 plasmids, bla NDM-5 was embedded in a novel transposon, Tn 7051 (IS 3000-ΔIS Aba125-IS 5-ΔIS Aba125- bla NDM-5- ble MBL- trpF- tat-∆ dct-IS 26-∆ umuD-∆IS Kox3-IS 3000), which was identical to the genetic structure surrounding bla NDM-5 found in some IncX3 plasmids. The IncHI2-IncF hybrid plasmid pHNTH9F11-1 was formed by homologous recombination of the bla NDM-5-carrying IncHI2 plasmid and a heavy-metal-resistant IncF plasmid through ∆Tn 1721. To the best of our knowledge, this is the first report on the characterization of bla NDM-5-bearing plasmids in fish in China. The IncHI2 plasmid pHNBYF33-1 may be transmitted from ducks, considering the common duck-fish freshwater aquaculture system in Guangdong. Tn 7051 is likely responsible for the transfer of bla NDM-5 from IncX3 to IncHI2 plasmids in Enterobacteriaceae, resulting in the expansion of transmission vectors of bla NDM-5.


Assuntos
Carpas , Infecções por Enterobacteriaceae , Animais , Antibacterianos/farmacologia , Carpas/genética , Patos/genética , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/veterinária , Testes de Sensibilidade Microbiana/veterinária , Plasmídeos/genética
19.
Microb Drug Resist ; 28(4): 453-460, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35451881

RESUMO

The spread of NDM-5-producing Escherichia coli has become a severe challenge in clinical therapy, which necessitates reliable detection and surveillance methods. However, limited information is available regarding the prevalence and dissemination of the blaNDM-5 gene in E. coli in China. Therefore, we investigated the dissemination of the blaNDM-5 gene in carbapenem-resistant E. coli isolates from different regions. A total of 1,180 carbapenem-resistant enterobacteriaceae strains were obtained from patients admitted to the 20 sentinel hospitals in 8 cities. Strains positive for blaNDM-5 were detected using the Vitek 2 compact system, 16S ribosomal RNA (rRNA) gene sequencing, polymerase chain reaction, the S1 pulsed-field gel electrophoresis assay, and Southern blot hybridization. The horizontal-transfer capability of the blaNDM gene was assessed by filter mating with a standard E. coli J53 azide-resistant strain as the recipient. Genotyping, susceptibility testing, and whole genome sequencing were performed. Seven strains of blaNDM-5-positive E. coli were detected in 1,180 clinical strains from different regions in China. The blaNDM-5-carrying strains showed resistance to multiple tested antibiotics and belonged to two widespread sequence types, sequence type (ST)167 and ST405. Antimicrobial resistance genes, including blaCTX-M, blaOXA, blaCMY, and two novel blaTEM variants (blaTEM-230 and blaTEM-231) were also identified. Southern blotting located the blaNDM-5 gene on 46 kb IncX3 plasmids in all isolates, which showed only two single nucleotide differences between EJN003 and the other strains. This study further confirms the increasing occurrence of blaNDM-5-carrying IncX3 plasmids and the dissemination of carbapenem resistance in E. coli isolates using the plasmid from different parts in China, which warrants stringent surveillance and control measures.


Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Carbapenêmicos , China/epidemiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética
20.
Front Cell Infect Microbiol ; 12: 922031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899054

RESUMO

We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded blaNDM-5 and mcr-8.2 genes. The blaNDM-5 gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone.


Assuntos
Colistina , Transplante de Pulmão , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Cromossomos , Colistina/farmacologia , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Tigeciclina/farmacologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA