RESUMO
We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants k a (FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x-ray structures. k a (FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in k a (FeN), allowing one to compare trends in diverse protein groups. Moreover, k a (NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.
Assuntos
Histidina , Ferro , Animais , Humanos , Ferro/química , Heme/química , Hemoglobinas , OxirreduçãoRESUMO
The Local Vibrational Mode Analysis, initially applied to diverse molecular systems, was extended to periodic systems in 2019. This work introduces an enhanced version of the LModeA software, specifically designed for the comprehensive analysis of two and three-dimensional periodic structures. Notably, a novel interface with the Crystal package was established, enabling a seamless transition from molecules to periodic systems using a unified methodology. Two distinct sets of uranium-based systems were investigated: (i) the evolution of the Uranyl ion (UO 2 2 + ) traced from its molecular configurations to the solid state, exemplified by Cs 2 UO 2 Cl 4 and (ii) Uranium tetrachloride (UCl 4 ) in both its molecular and crystalline forms. The primary focus was on exploring the impact of crystal packing on key properties, including IR and Raman spectra, structural parameters, and an in-depth assessment of bond strength utilizing local mode perspectives. This work not only demonstrates the adaptability and versatility of LModeA for periodic systems but also highlights its potential for gaining insights into complex materials and aiding in the design of new materials through fine-tuning.
RESUMO
Solvent molecules interact with a solute through various intermolecular forces. Here we employed a potential energy surface (PES) analysis to interpret the solvent-induced variations in the strengths of dative (Me3NBH3) and ionic (LiCl) bonds, which possess both ionic and covalent (neutral) characteristics. The change of a bond is driven by the gradient (force) of the solvent-solute interaction energy with respect to the focused bond length. Positive force shortens the bond length and increases the bond force constant, leading to a blue-shift of the bond stretching vibrational frequency upon solvation. Conversely, negative force elongates the bond, resulting in a reduced bond force constant and red-shift of the stretching vibrational frequency. The different responses of Me3NBH3 and LiCl to solvation are studied with valence bond (VB) theory, as Me3NBH3 and LiCl are dominated by the neutral covalent VB structure and the ionic VB structure, respectively. The dipole moment of an ionic VB structure increases along the increasing bond distance, while the dipole moment of a neutral covalent VB structure increases with the decreasing bond distance. The roles of the dominating VB structures are further examined by the geometry optimizations and frequency calculations with the block-localized wavefunction (BLW) method.
RESUMO
This study aimed to evaluate the shear bond strength (SBS) when bonding a universal resin cement to a disilicate glass-ceramic using different adhesive protocols. Sixty specimens were etched with 10% hydrofluoric acid (HF) for 20 s and assigned to one of four treatment protocols (n = 15): The Positive control protocol comprised use of a universal adhesive system + adhesive resin cement; the Test1 protocol comprised use of a new universal adhesive system + universal resin cement; the Test2 protocol comprised use of a silane coupling agent + universal resin cement; and the use of a universal resin cement without adhesive and silane served as the Negative control. One of the two resin cement cylinders built on each specimen in each group was used to test for 24-h SBS, while the other was thermocycled and then tested for SBS. Data were submitted to two-way ANOVA, Tukey's test, and Weibull analysis. The negative control (24 h) showed the lowest SBS mean value. The Test2 protocol resulted in the highest SBS mean value after thermocycling. Adhesive and mixed failures were prevalent in all groups. No statistical difference in m values was observed among the groups at 24 h. After thermocycling, the two Test protocols showed the highest m values. The m values were significantly lower after thermocycling than at 24 h for all groups. After thermal aging, The Test2 protocol resulted in a statistically significantly higher SBS mean value after thermal aging than seen for the other groups.
RESUMO
This study evaluated the effect on adhesive layer thickness, bond strength, and adhesive failure pattern of the application of universal adhesive (Scotchbond Universal) using either manual or rotary brush in dentin previously impregnated with bioceramic sealer (Sealer Plus BC) using a manual brush, at 24 h and 1 year. Eighty-eight bovine crowns were divided into four groups (n = 22) according to the intervention: (i) use of bioceramic sealer and adhesive application using manual brush, (ii) use of bioceramic sealer and adhesive application using rotary brush, (iii) use of resin sealer and adhesive application using manual brush, and (iv) use of resin sealer and adhesive application using rotary brush. Subsequently, specimens were restored with a composite resin (Filtek Z-250). Adhesive layer thickness was evaluated using confocal microscopy. Bond strength was assessed using the microtensile bond strength test, and adhesive failure pattern was evaluated under a stereomicroscope. Data were analyzed using two-way ANOVA/Tukey tests. Specimens where a rotary brush had been used exhibited lower adhesive layer thickness. Specimens treated with resin sealer and using a manual brush showed lower bond strength values and a higher occurrence of adhesive failures at 24 h and 1 year than specimens treated with bioceramic sealer and using rotary brush for adhesive application.
Assuntos
Resinas Compostas , Colagem Dentária , Cimentos de Resina , Resistência à Tração , Animais , Colagem Dentária/métodos , Bovinos , Cimentos de Resina/química , Resinas Compostas/química , Teste de Materiais , Adesivos Dentinários/química , Análise do Estresse Dentário , Dentina , Propriedades de Superfície , Microscopia Confocal , Fatores de TempoRESUMO
This study aimed at examining the bond strength between zirconia and ceramic veneer, following the ISO 9693 guidelines. A total of fifty specimens of zirconia/ceramic-veneer system were produced using two commercial zirconias (VITA YZ-HTWhite and Zolid HT+ White, referred to as Group A and Group B, respectively) and a ceramic-veneering material (Zirkonia 750). The microstructure (via x-ray diffraction analysis, XRD and Secondary Electron mode, SEM) and the mechanical properties (via 3-point bending tests) of the two groups were assessed. Then, experiments were conducted according to the ISO 9693 and conventional protocols applied for producing zirconia/ceramic-veneer restorations. Bond strength values, measured by 3-point bending tests, were 34.42 ± 7.60 MPa for Group A and 31.92 ± 6.95 MPa for Group B. SEM observations of the cohesively fractured surfaces (on the porcelain side) and the examination for normality using the Shapiro-Wilk test suggested the use of Weibull statistical analysis. Median strength (σ50%) for Group A and Group B was 34.76 and 32.22 MPa, while the characteristic strength (σ63.2%) was 35.78 and 33.14 MPa, respectively. The Weibull modulus disparity between groups (12.69 and 13.07) was not significant. Bond strength exceeded the ISO 9693 minimum of 20 MPa, suggesting satisfactory strength for clinical use.
Assuntos
Colagem Dentária , Porcelana Dentária , Análise do Estresse Dentário , Facetas Dentárias , Teste de Materiais , Microscopia Eletrônica de Varredura , Difração de Raios X , Zircônio , Zircônio/química , Porcelana Dentária/química , Propriedades de Superfície , Cerâmica/química , Materiais Dentários/química , HumanosRESUMO
This study evaluated the effect of different concentrations of alpha-tocopherol in gel form on fracture strength, hybrid layer formation, and microtensile bond strength of endodontically treated teeth bleached with 40% hydrogen peroxide (H2 O2 ). Sixty bovine incisors were randomized into one of six groups (n = 10 incisors per group) defined by the interventions carried out after endodontic treatment. In the control group, no additional intervention was carried out, while all teeth in the five intervention groups were bleached with 40% H2 O2 and subsequently treated with alpha-tocopherol at concentrations of 15% (15AT), 20% (20AT), or 25% (25AT), with 10% sodium ascorbate (10SA), or with nothing (40HP). Fracture strength was evaluated in a mechanical testing machine, hybrid layer formation was assessed using scanning electron microscopy, and bond strength was determined using microtensile bond-strength testing. Data were analyzed using Kruskal-Wallis and Dunn's tests. No statistically significant difference regarding fracture strength was observed among groups. Hybrid layer formation was greater in the 15AT group than in groups 40HP and 10SA. Teeth in groups 15AT, 20AT, and 25AT demonstrated higher bond strength than teeth in groups 40HP and 10SA. Alpha-tocopherol, preferably at 15%, effectively reverses the deleterious effects, of bleaching, on hybrid layer formation and bond strength to dentin.
Assuntos
Colagem Dentária , Clareamento Dental , Dente não Vital , Bovinos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , alfa-Tocoferol/farmacologia , Resistência à Flexão , Resinas Compostas/química , Ácido HipoclorosoRESUMO
To evaluate and compare the shear bond strength of composite resin restorations in primary teeth, following cavity preparation with both traditional dental burs and laser irradiation. One hundred primary molars extracted from the children visiting our department were collected and randomly divided into five groups (A-E) with 20 teeth in each group. In groups A, B, C, D, and E the teeth samples were etched with phosphoric acid, Er; YAG laser followed by acid etching, Er, Cr: YSGG laser followed by acid etching, Er; YAG laser etching only and Er, Cr: YSGG laser etching only, respectively. Following, all the samples were restored with composite resin and subjected to 500 cycles of thermocycling. The shear bond strength of the resin composite was analyzed. The type of fractures was also noted. Data obtained were subjected to statistical analysis. The mean value of shear bond strength of Group A, B, C, D, and E was 17.562 ± 0.810, 15.928 ± 0.415, 14.964 ± 0.566, 11.833 ± 0.533 and 11.187 ± 0.517, respectively. Adhesive failure was most commonly seen in all the groups. The phosphoric acid etching remains a highly effective technique for pre-treating dentin in composite resin restorations. The shear strength of composite resin to the dentin of laser-prepared cavity in primary teeth can be improved by the addition of acid etching.
Assuntos
Resinas Compostas , Preparo da Cavidade Dentária , Restauração Dentária Permanente , Lasers de Estado Sólido , Resistência ao Cisalhamento , Dente Decíduo , Humanos , Resinas Compostas/química , Lasers de Estado Sólido/uso terapêutico , Preparo da Cavidade Dentária/métodos , Restauração Dentária Permanente/métodos , Técnicas In Vitro , Colagem Dentária/métodos , Dente Molar , Condicionamento Ácido do Dente/métodos , CriançaRESUMO
Blue diode lasers are alternative curing devices for dental composites. The aim of this study was to investigate the influence of blue diode laser polymerization on shear bond strength of bulk fill composites to human dentin and temperature rise during two types of polymerization. Composite cylinders of SDR Plus(SDR) and Ever X Flow(EX) were bonded to dentin slabs using Adhese Universal and curing devices blue diode laser (449 nm, 1.6 W) and Power Cure LED. For each material and curing device there were two polymerization approaches: 1)conventional: separate curing of adhesive; 2)co-curing: simultaneous adhesive and composite curing. Polymerization modes for each material in conventional and co-curing(c) approach were: blue laser 2000 mW/cm2 for 5 s (L5 and L5c); blue laser 1000 mW/cm2 for 10 s (L10 and L10c); Power Cure 2000 mW/cm2 for 5 s (LED5 and LED5c); Power Cure 1000 mW/cm2 for 10 s (LED10 and LED10c). Temeperature was measured using thermal vision camera. For SDR, the highest bond strength was 24.3 MPa in L10c, and the lowest 9.2 MPa in LED5c. EX exhibited the highest bond strength(21.3 MPa) in LED5, and the lowest in L5(7.7 MPa). The highest temperature rise for SDR was in L10 and L5 (7.3 and 7.2 °C), and the lowest in LED5(0.8 °C). For EX, the highest temperature rise was in L5 (13.0 °C), and the lowest in LED5 (0.7 °C). Temperature rise was higher during blue laser polymerization, especially at high intensity and with conventional curing. Preferable blue laser curing mode is co-curing at 1000mW/cm2 for 10 s.
Assuntos
Resinas Compostas , Dentina , Humanos , Temperatura , Polimerização , Teste de Materiais , Resinas Compostas/química , LasersRESUMO
OBJECTIVE: Self-etching dental adhesives bond with dentin through chemical reactions with calcium. This study assessed bond strength (BS) using microtensile (µTBS) and microshear (µSBS) tests on sound and post-radiotherapy dentin, with dental adhesives containing different functional monomers. METHODS: Sound dentin (SD) and post-radiotherapy irradiated dentin (ID) were tested with two adhesive systems: Clearfil SE Bond (SE, 10-MDP-based) and FL Bond II (FL, containing carboxylic and phosphonic monomers with S-PRG bioactive particles). The tests occurred initially (24 h) and six months later; fracture mode was also analyzed (40x). Ninety-six human molars were randomly assigned (n = 12), and half were irradiated with a 70 Gy radiation dose. For µTBS test, teeth were bonded, restored and sectioned them into beams (0.64 mm2). The µSBS test used filled transparent cylindrical matrices with resin composite and light-cured them after dental adhesive applications. Three-way ANOVA and Tukey's test (p < 0.05) analyzed the data. RESULTS: µTBS showed a significant substrate x adhesive interaction (p < 0.001), while µSBS was significant for all factors (p = 0.006). SE and FL performed better on SD and ID, respectively, in the µTBS test. As for µSBS, SE showed higher values on ID (p < 0.05). Lower BS values occurred for SD-FL and ID-SE after six months. CONCLUSION: Dental adhesive performance varied based on substrate type and test method. FL was more stable for ID in µTBS, while SE excelled in µSBS. CLINICAL RELEVANCE: As post-radiotherapy irradiated dentin becomes more vulnerable, self-etching systems based on functional monomer and bioactive ingredients may exhibit appropriate bonding to this altered substrate.
Assuntos
Colagem Dentária , Análise do Estresse Dentário , Adesivos Dentinários , Teste de Materiais , Cimentos de Resina , Resistência à Tração , Humanos , Adesivos Dentinários/química , Adesivos Dentinários/efeitos da radiação , Cimentos de Resina/química , Cimentos de Resina/efeitos da radiação , Colagem Dentária/métodos , Técnicas In Vitro , Dentina/efeitos da radiação , Resistência ao Cisalhamento , Dente Molar , Propriedades de SuperfícieRESUMO
OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.
Assuntos
Colagem Dentária , Vidro , Teste de Materiais , Cimentos de Resina , Silanos , Propriedades de Superfície , Resistência à Tração , Água , Zircônio , Zircônio/química , Cimentos de Resina/química , Silanos/química , Água/química , Colagem Dentária/métodos , Vidro/química , Microscopia Eletrônica de Varredura , Análise do Estresse DentárioRESUMO
OBJECTIVE: This study aimed to evaluate the effect of ultrasonic activation of etch-and-rinse and self-etch adhesive systems on the bond strength of resin cement to irradiated root dentin. MATERIALS AND METHODS: Eighty human maxillary anterior teeth were distributed into 8 groups (n = 10), according to the type of adhesive system used (etch-and-rinse and self-etch), the ultrasonic activation of the adhesive systems, and the dentin condition (irradiated or non-irradiated - 70 Gy). Endodontic treatment was performed followed by fiberglass post-space preparation. After fiberglass posts' luting, the roots were transversely sectioned on dentin discs and submitted to the push-out bond strength test (0.5 mm/min). The fractured specimens were analyzed under a stereomicroscope and Scanning Electron Microscope (SEM) for failure mode classification. One of the dentin discs was analyzed under SEM to evaluate the characteristics of the adhesive interface. RESULTS: Irradiated specimens had lower bond strength than non-irradiated specimens (P < 0.0001). Ultrasonic activation of both adhesive systems increased the bond strength of the resin cement to irradiated dentin (P < 0.0001). Radiotherapy significantly affected the failure mode in the middle (P = 0.024) and apical thirds (P = 0.032) (adhesive failure). CONCLUSION: Non-irradiated specimens had a more homogeneous adhesive interface. When ultrasonically activated, both adhesive systems showed a greater number of resinous tags, regardless of the dentin condition. CLINICAL RELEVANCE: Ultrasonic activation of adhesive systems is a feasible strategy to enhance fiberglass posts retention in oncological patients.
Assuntos
Colagem Dentária , Dentina , Teste de Materiais , Microscopia Eletrônica de Varredura , Técnica para Retentor Intrarradicular , Cimentos de Resina , Humanos , Cimentos de Resina/química , Colagem Dentária/métodos , Dentina/efeitos da radiação , Técnicas In Vitro , Adesivos Dentinários/química , Análise do Estresse Dentário , Propriedades de Superfície , Raiz Dentária/efeitos da radiação , Ultrassom , Condicionamento Ácido do Dente , Incisivo , Vidro/químicaRESUMO
OBJECTIVES: To investigate dimensional accuracy of polyether (PE) and vinylpolysiloxane (VPS) impressions taken with manually fabricated and 3D-printed trays. MATERIALS AND METHODS: To evaluate impression accuracy, highly precise digital data of a metallic lower jaw model with prepared teeth (regions 34 and 36), an implant (region 47) and three precision balls placed occlusally along the dental arch served as reference. PE (Impregum, 3M Oral Care) and VPS (Aquasil, Dentsply Sirona) impressions (n = 10/group) were taken with trays fabricated using different materials and manufacturing techniques (FDM: filament deposition modeling, material: Arfona Tray, Arfona; printer: Pro2, Raise3D; DLP: digital light processing, material: V-Print Tray, VOCO, printer: Max, Asiga; MPR: manual processing with light-curing plates, material: LC Tray, Müller-Omicron) including an open implant impression. Scans of resulting stone models were compared with the reference situation. Global distance and angular deviations as well as local trueness and precision for abutment teeth and scan abutment were computed. Possible statistical effects were analyzed using ANOVA. RESULTS: Clinically acceptable global accuracy was found (all mean absolute distance changes < 100 µm) and local accuracy for single abutments was excellent. All factors (abutment type, impression material, tray material) affected global accuracy (p < 0.05). In particular with PE impressions, MPR trays led to the best accuracies, both in horizontal and vertical direction. CONCLUSIONS: Within the limitations of this in vitro study, impression accuracy was high in use of both polyether and vinylpolysiloxane combined with different 3D-printed and customized trays making them recommendable for at least impressions for smaller fixed dental prostheses. Manually fabricated trays were overall still the best choice if utmost precision is required. CLINICAL RELEVANCE: Based on the results of this study, use of innovative CAD-CAM fabrication of individual impression trays fulfills the perquisites to be a viable option for impression making. In the sense of translational research, performance should be proved in a clinical setting.
Assuntos
Materiais para Moldagem Odontológica , Técnica de Moldagem Odontológica , Modelos Dentários , Polivinil , Impressão Tridimensional , Resinas Sintéticas , Siloxanas , Materiais para Moldagem Odontológica/química , Siloxanas/química , Polivinil/química , Técnicas In Vitro , Humanos , Resinas Sintéticas/química , Teste de MateriaisRESUMO
OBJECTIVES: The purpose of this study is to evaluate the bond strength of different computer-aided design / computer-aided manufacturing (CAD/CAM) hybrid ceramic materials following different pretreatments. METHODS: A total of 306 CAD/CAM hybrid material specimens were manufactured, n = 102 for each material (VarseoSmile Crownplus [VSCP] by 3D-printing; Vita Enamic [VE] and Grandio Blocs [GB] by milling). Each material was randomly divided into six groups regarding different pretreatment strategies: control, silane, sandblasting (50 µm aluminum oxide particles), sandblasting + silane, etching (9% hydrofluorics acid), etching + silane. Subsequently, surface roughness (Ra) values, surface free energy (SFE) were measured. Each specimen was bonded with a dual-cured adhesive composite. Half of the specimens were subjected to thermocycling (5000 cycles, 5-55 °C). The shear bond strength (SBS) test was performed. Data were analyzed by using a two-way analysis of variance, independent t-test, and Mann-Whitney-U-test (α = 0.05). RESULTS: Material type (p = 0.001), pretreatment strategy (p < 0.001), and the interaction (p < 0.001) all had significant effects on Ra value. However, only etching on VSCP and VE surface increased SFE value significantly. Regarding SBS value, no significant difference was found among the three materials (p = 0.937), while the pretreatment strategy significantly influenced SBS (p < 0.05). Etching on VSCP specimens showed the lowest mean value among all groups, while sandblasting and silane result in higher SBS for all test materials. CONCLUSIONS: The bond strength of CAD/CAM hybrid ceramic materials for milling and 3D-printing was comparable. Sandblasting and silane coupling were suitable for both millable and printable materials, while hydrofluoric etching should not be recommended for CAD/CAM hybrid ceramic materials. CLINICAL RELEVANCE: Since comparable evidence between 3D-printable and millable CAD/CAM dental hybrid materials is scarce, the present study gives clear guidance for pretreatment planning on different materials.
Assuntos
Desenho Assistido por Computador , Coroas , Colagem Dentária , Análise do Estresse Dentário , Teste de Materiais , Resistência ao Cisalhamento , Propriedades de Superfície , Colagem Dentária/métodos , Cerâmica/química , Silanos/química , Materiais Dentários/química , Corrosão Dentária/métodos , Porcelana Dentária/química , Técnicas In Vitro , HumanosRESUMO
OBJECTIVES: To evaluate the effect of proanthocyanidin-functionalized hydroxyapatite nanoparticles (nHAp_PA) used as pretreatment at different concentrations on the microtensile bond strength (µTBS) and endogenous enzymatic activity (MMPs) on pH-cycled dentin after 24 h and 6 months of artificial aging. MATERIALS AND METHODS: Fifty human sound dentin blocks were randomly assigned to 5 groups (n = 10): (i) negative control (no treatment); (ii) positive control (pH-cycling); (iii) pH-cycling + 2% nHAp_PA for 60s; (iv) pH-cycling + 6.5% nHAp_PA for 60s; (v) pH-cycling + 15% nHAp_PA for 60s. A self-etch adhesive was used for bonding procedures before resin composite build-ups. Specimens were tested with the µTBS test after 24 h and 6 months of laboratory storage. The proteolytic activity in each group was evaluated with gelatin zymography and in situ zymography. Data were statistically analyzed (p < 0.05). RESULTS: At 24 h, the µTBS of the experimental groups were significantly higher than the controls (p ≤ 0.001), and no differences were observed between different concentrations (p > 0.05). Artificial aging significantly decreased bond strength in all groups (p ≤ 0.008); however, nHAp_PA 2% still yielded higher bonding values than controls (p ≤ 0.007). The groups pretreated with nHAp_PA exhibited lower MMP-9 and MMP-2 activities compared to the positive control group and almost the same enzymatic activity as the negative control group. In situ zymography showed that after 6 months of aging, nHAp_PA 2% and nHAp_PA 6,5% decreased enzymatic activity as well as the negative control. CONCLUSIONS: Dentin pretreatment with nHAp_PA increased the bonding performance of a self-etch adhesive and decreased MMP-2 and MMP-9 activities after 6 months.
Assuntos
Colagem Dentária , Durapatita , Teste de Materiais , Nanopartículas , Proantocianidinas , Resistência à Tração , Proantocianidinas/química , Proantocianidinas/farmacologia , Durapatita/química , Nanopartículas/química , Humanos , Colagem Dentária/métodos , Adesivos Dentinários/química , Dentina , Propriedades de Superfície , Técnicas In Vitro , Análise do Estresse Dentário , Concentração de Íons de Hidrogênio , Resinas Compostas/química , Distribuição AleatóriaRESUMO
OBJECTIVE: The study aims to evaluate the shear bond and flexural strength fatigue behavior of yttrium-stabilized zirconia (4YSZ) repaired using different resin composites. MATERIALS AND METHODS: Cylindric specimens of 4YSZ were obtained for the bond strength (Ø = 6 mm, 1.5 mm of thickness) and biaxial flexural strength (Ø = 15 mm, 1 mm of thickness) fatigue tests and divided into 3 groups according to the repair resin composite: EVO (nanohybrid), BULK (bulk-fill), and FLOW (flowable). The zirconia surface was air-abraded with alumina particles, a 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) primer was applied, and the resin composite was build-up over the zirconia. Fatigue shear bond strength and flexural fatigue strength tests were performed (n = 15). One-way ANOVA and Tukey post hoc tests were carried out for both outcomes, besides scanning electron microscopy and finite element analysis. RESULTS: The repair material affected the fatigue shear bond strength of zirconia ceramic. The BULK group (18.9 MPa) depicted higher bond strength values than FLOW (14.8 MPa) (p = 0.04), while EVO (18.0 MPa) showed similar results to both groups. No effect was observed for the mechanical behavior (p = 0.53). The stress distribution was similar for all groups. CONCLUSION: The repair of yttrium-stabilized zirconia (4YSZ) ceramics with bulk-fill resin composites was the best option for high fatigue bond strength. However, the fatigue mechanical performance was similar regardless of the applied repair material. CLINICAL RELEVANCE: The repair of yttrium-stabilized zirconia (4YSZ) monolithic restorations may be performed with nanohybrid and bulk-fill resin composites in order to promote longevity in the treatment.
Assuntos
Colagem Dentária , Metacrilatos , Colagem Dentária/métodos , Propriedades de Superfície , Teste de Materiais , Resinas Compostas/química , Zircônio/química , Cerâmica/química , Resistência ao Cisalhamento , Ítrio/química , Cimentos de Resina/química , Análise do Estresse DentárioRESUMO
Because the use of hydrofluoric acid (HF) poses health risks if handled improperly, many clinicians prefer to have the ceramic restorations pre-etched in dental laboratories. However, during the try-in procedure, the pre-etched glass-ceramic restorations may be contaminated with saliva resulting in reduced bond strength. This in-vitro study aimed to investigate the effect of different surface treatments on the bond strength of lithium disilicate (LD) glass-ceramic restorations (IPS e.max Press, Ivoclar Vivadent) to two resin cements. One-hundred eighty blocks (4X4X3mm) of LD glass-ceramic were divided into twelve groups (n = 15), of which six received Variolink Esthetic DC (VE) cement and six received RelyX Ultimate (RU) cement, following the surface treatments: G1) Control: Hydrofluoric Acid + Silane (HF + Sil); G2) Hydrofluoric Acid + Saliva + Silane (HF + S + Sil); G3) Hydrofluoric Acid + Saliva + Ivoclean + Silane (HF + S + IC + Sil); G4) Hydrofluoric Acid + Saliva + Phosphoric Acid + Silane (HF + S + P + Sil); G5) Hydrofluoric Acid + Saliva + Monobond Etch & Prime (HF + S + EP); G6) Monobond Etch & Prime (EP). Following treatment, a resin-cement cylinder (2.3 mm diameter) was built on the glass-ceramic surface, photocured (20 s), stored in distilled water (37 °C, 24 h) and submitted to the shear bond strength test. Bond strength data (MPa) were subjected to two-way ANOVA and Tukey (α = 0.01). Cement type and surface treatment had a significant effect on the bond strength (p < 0.001) (Table 4). Single-step Monobond Etch & Prime (EP) significantly improved the bond strength of resin-cements to glass-ceramic with and without saliva contamination.
Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Ácido Fluorídrico , Silanos , Propriedades de Superfície , Porcelana Dentária , Cerâmica , Cimentos Dentários , Protocolos Clínicos , Teste de MateriaisRESUMO
There is limited information on the repairability of prostheses produced with digital technology. This study aims to evaluate various surface treatments on flexural bond strength of repaired dentured base resins produced by digital and conventional methods. A total of 360 samples were prepared from one heat-polymerized, one CAD/CAM milled and one 3D printed denture base materials. All of the test samples were subjected to thermocycling (5-55 °C, 5000 cycles) before and after repair with auto-polymerizing acrylic resin. The test samples were divided into five subgroups according to the surface treatment: grinding with silicon carbide (SC), sandblasting with Al2O3 (SB), Er:YAG laser (L), plasma (P) and negative control (NC) group (no treatment). In addition, the positive control (PC) group consisted of intact samples for the flexural strength test. Surface roughness measurements were performed with a profilometer. After repairing the test samples, a universal test device determined the flexural strength values. Both the surface topography and the fractured surfaces of samples were examined by SEM analysis. The elemental composition of the tested samples was analyzed by EDS. Kruskal-Wallis and Mann-Whitney U tests were performed for statistical analysis of data. SB and L surface treatments statistically significantly increased the surface roughness values of all three materials compared to NC subgroups (p < 0.001). The flexural strength values of the PC groups in all three test materials were significantly higher than those of the other groups (p < 0.001). The repair flexural strength values were statistically different between the SC-SB, L-SB, and NC-SB subgroups for the CAD/CAM groups, and the L-SC and L-NC subgroups for the 3D groups (p < 0.001). The surface treatments applied to the CAD/CAM and heat-polymerized groups did not result in a statistically significant difference in the repair flexural strength values compared to the NC groups (p > 0.05). Laser surface treatment has been the most powerful repair method for 3D printing technique. Surface treatments led to similar repair flexural strengths to untreated groups for CAD/CAM milled and heat-polymerized test samples.
Assuntos
Compostos Inorgânicos de Carbono , Desenho Assistido por Computador , Bases de Dentadura , Resistência à Flexão , Teste de Materiais , Microscopia Eletrônica de Varredura , Impressão Tridimensional , Propriedades de Superfície , Compostos Inorgânicos de Carbono/química , Materiais Dentários/química , Resinas Acrílicas/química , Lasers de Estado Sólido , Colagem Dentária/métodos , Análise do Estresse Dentário , Compostos de Silício/química , Reparação em Dentadura , Óxido de Alumínio/química , PolimerizaçãoRESUMO
This study evaluated the impact of different repair protocols on a composite resin substrate using distinct bonding agents submitted or not to artificial aging. Unopened sets of a single-step universal adhesive system (UA) and silane-coupling agents, a single-step pre-hydrolyzed (PH) or a two-step immediately hydrolyzed (IH), were used. Half of the sets were subjected to artificial aging being stored at 48 °C for 30 days, while the other half remained unaged. The composite resin substrates were prepared and aged in distilled water, sandblasted (Al2O3), and cleaned. Then the different repair protocols were applied according to the groups. UA was used without a previous silane layer, while PH and IH were applied followed by a single-step etch-and-rinse adhesive system. Adhesive systems were light-activated, and four composite resin cylinders were formed over the substrate. After 24 h, the specimens were subjected to microshear bond strength (µSBS) test and failure mode analysis. The µSBS data were subjected to two-way ANOVA followed by Tukey HSD; Kruskal-Wallis analysis was used for failure mode distribution (α = 0.05). After aging the products, UA showed higher bond strength, while PH had significantly lower results, and IH showed no significant differences (p = 0.157). No significant differences were found for bond strength among the repair protocols when using non-aged products (p > 0.05). The protocols using UA and IH showed no significant differences between aged and non-aged bottles, whereas PH exhibited lower bond strength when comparing aged and non-aged products. More cohesive failures were observed in the resin substrate for the IH group without aging.
RESUMO
This study aimed to evaluate the influence of radiotherapy and different endodontic treatment protocols on the bond strength to pulp chamber dentin. Eighty mandibular molars were randomly divided into two groups (n = 40): non-irradiated and irradiated (60 Gy). The pulp chambers were sectioned, and each group was subdivided (n = 8), according to the endodontic treatment protocol: no treatment (Control); Single-visit; Two-visits; Immediate dentin sealing (IDS) + single-visit; and IDS + two-visits. Each endodontic treatment visit was simulated through irrigation with 2.5% NaOCl, 17% EDTA and distilled water. IDS was performed by actively applying two coats of a universal adhesive to the lateral walls of the pulp chamber. After, the pulp chambers were restored with resin composite and four sticks were obtained for microtensile test. In addition, the dentin of the pulp chamber roof was assessed for surface roughness, chemical composition, and topography after each treatment protocol. Two-way ANOVA, Tukey's post hoc, Mann-Whitney, Kruskal-Wallis and Dunn's post hoc were performed (α = 5%). The treatment protocol affected bond strength (p < 0.05), while the irradiation did not (p > 0.05). The control group presented the highest values (p < 0.05). The single-visit group demonstrated better performance compared to the other groups (p < 0.05), which did not differ from each other (p > 0.05) The use of IDS changed the surface roughness (p < 0.05), chemical composition (p < 0.05) and topography of the dentin. In conclusion, the treatment protocol influenced dentin adhesion, while irradiation did not.