Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Clin Periodontol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020503

RESUMO

AIM: To assess whether guided bone regeneration (GBR) treatment of peri-implantitis-related bony defects could improve healing compared to open flap debridement (OFD) at 36 months. MATERIALS AND METHODS: In a multi-centre, randomized clinical trial, 32 individuals received OFD (control group [CG]) and 34 GBR treatment (test group [TG]). Radiographic defect fill (RDF), probing pocket depth (PPD), bleeding on probing (BOP) suppuration (SUP), mucosal recession (MREC) and patient-reported outcomes (PROs) were evaluated at 36 months. RESULTS: Fifty individuals attended a supportive peri-implant therapy program and completed the 36-month follow-up. GBR treatment resulted in an RDF of 2.13 ± 1.26 mm compared to 1.64 ± 1.54 mm following OFD (p = .18). No difference was found in PPD, BOP, SUP, REC or PROs between the groups. Successful treatment (no additional bone loss, PPD ≤ 5 mm, no BOP and no SUP) was achieved in 46.2% in TG and 20% in CG (p = .053). Treatment results obtained at 12 months were generally maintained up to 36 months. No significant changes were noticed between 12 and 36 months. CONCLUSIONS: At 36 months, treatment results obtained at 1 year were sustained following both GBR and OFD in patients attending supportive peri-implant therapy. GBR resulted in more RDF and higher composite treatment success rate than OFD (ClinicalTrials.gov Identifier [NCT02375750]).

2.
J Clin Periodontol ; 51(8): 1005-1016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38710641

RESUMO

AIM: This retrospective cohort study aimed to volumetrically investigate the bone stability rate of prefabricated allogeneic bone blocks (PBB) and computer-aided design (CAD)/computer-aided manufacturing (CAM) custom-milled allogeneic bone blocks (CCBB) for ridge augmentation. MATERIALS AND METHODS: Nineteen patients were treated with 20 allografts: 11 CCBB, 9 PBB; 10 in the maxilla and 10 in the mandible. Clinical treatment history and cone beam computed tomography scans before surgery (t0), directly after graft surgery (t1) and after 6 months of healing prior to implant insertion (t2) were evaluated using a three-dimensional evaluation software for absolute bone volume, stability as well as vertical and horizontal bone gain. Furthermore, the inserted implants were analysed for survival, marginal bone loss (MBL) and complications for a mean follow-up period of 43.75 (±33.94) months. RESULTS: A mean absolute volume of 2228.1 mm3 (±1205) was grafted at t1. The bone stability rate was 87.6% (±9.9) for CCBB and 83.0% (±14.5) for PBB. The stability was higher in the maxilla (91.6%) than in the mandible (79.53%). Surgery time of PBB was longer than for CCBB (mean Δ = 52 min). The survival rate of the inserted implants was 100% with a mean MBL of 0.41 mm (±0.37). CONCLUSION: The clinical performance of both allograft block designs was equally satisfactory for vertical and horizontal bone grafting prior to implant placement. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT06027710.


Assuntos
Transplante Ósseo , Desenho Assistido por Computador , Tomografia Computadorizada de Feixe Cônico , Implantes Dentários , Imageamento Tridimensional , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perda do Osso Alveolar/diagnóstico por imagem , Aumento do Rebordo Alveolar/métodos , Transplante Ósseo/métodos , Estudos de Coortes , Implantação Dentária Endóssea/métodos , Seguimentos , Imageamento Tridimensional/métodos , Estudos Retrospectivos
3.
Clin Oral Implants Res ; 35(3): 330-339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126121

RESUMO

OBJECTIVE: To evaluate the effect of a self-retaining block-type bone substitute (srBB) on the dimensional stability of the horizontal ridge width at the coronal level in a buccal dehiscence model. MATERIALS AND METHODS: Four box-shaped bone defects with a buccal dehiscence were surgically prepared in the partially edentulous mandible (n = 6). Experimental biomaterials were randomly assigned to each site: (1) Control group: no treatment, (2) particle-type bone substitute (PBS) group, (3) collagenated soft block bone substitute (csBB) group, and (4) self-retaining synthetic block bone (srBB) group. In all grafted groups, a collagen membrane covered the biomaterials. At 16 weeks, clinical, histological, and radiographic analyses were performed. RESULTS: Three of the six blocks in the srBB group became exposed and fell out during the first week after surgery. Therefore, the remaining three specimens were renamed RsrBB group. The RsrBB group showed an increase horizontal ridge compared to the pristine bone width at 2-4 mm below the CEJ, while the other groups showed resorption (augmented width at 2 mm below: 4.2, 42.4, 36.2, and 110.1% in the control, PBS, csBB, and RsrBB groups, respectively). The mineralized bone area was largest in the RsrBB group (4.74, 3.44, 5.67, and 7.77 mm2 in the control, PBS, csBB, and RsrBB groups, respectively.). CONCLUSIONS: The srBB group demonstrated the highest volume stability at the coronal level. These findings would potentially suggest that self-retaining block bone substitute might be a good candidate for alveolar ridge preservation.


Assuntos
Perda do Osso Alveolar , Aumento do Rebordo Alveolar , Substitutos Ósseos , Humanos , Perda do Osso Alveolar/cirurgia , Aumento do Rebordo Alveolar/métodos , Substitutos Ósseos/uso terapêutico , Colágeno , Extração Dentária , Alvéolo Dental/cirurgia
4.
BMC Musculoskelet Disord ; 25(1): 539, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997680

RESUMO

BACKGROUND: All orthopaedic procedures, comprising foot and ankle surgeries, seemed to show a positive trend, recently. Bone grafts are commonly employed to fix bone abnormalities resulting from trauma, disease, or other medical conditions. This study specifically focuses on reviewing the safety and efficacy of various bone substitutes used exclusively in foot and ankle surgeries, comparing them to autologous bone grafts. METHODS: The systematic search involved scanning electronic databases including PubMed, Scopus, Cochrane online library, and Web of Science, employing terms like 'Bone substitute,' 'synthetic bone graft,' 'Autograft,' and 'Ankle joint.' Inclusion criteria encompassed RCTs, case-control studies, and prospective/retrospective cohorts exploring different bone substitutes in foot and ankle surgeries. Meta-analysis was performed using R software, integrating odds ratios and 95% confidence intervals (CI). Cochrane's Q test assessed heterogeneity. RESULTS: This systematic review analyzed 8 articles involving a total of 894 patients. Out of these, 497 patients received synthetic bone grafts, while 397 patients received autologous bone grafts. Arthrodesis surgery was performed in five studies, and three studies used open reduction techniques. Among the synthetic bone grafts, three studies utilized a combination of recombinant human platelet-derived growth factor BB homodimer (rhPDGF-BB) and beta-tricalcium phosphate (ß-TCP) collagen, while four studies used hydroxyapatite compounds. One study did not provide details in this regard. The meta-analysis revealed similar findings in the occurrence of complications, as well as in both radiological and clinical evaluations, when contrasting autografts with synthetic bone grafts. CONCLUSION: Synthetic bone grafts show promise in achieving comparable outcomes in radiological, clinical, and quality-of-life aspects with fewer complications. However, additional research is necessary to identify the best scenarios for their use and to thoroughly confirm their effectiveness. LEVELS OF EVIDENCE: Level II.


Assuntos
Substitutos Ósseos , Transplante Ósseo , Transplante Autólogo , Humanos , Transplante Ósseo/métodos , Transplante Ósseo/efeitos adversos , Substitutos Ósseos/uso terapêutico , Transplante Autólogo/métodos , Resultado do Tratamento , Pé/cirurgia , Tornozelo/cirurgia , Articulação do Tornozelo/cirurgia , Articulação do Tornozelo/diagnóstico por imagem
5.
Clin Oral Investig ; 28(6): 351, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822921

RESUMO

OBJECTIVES: This study aimed to assess membrane use with a bone substitute graft for guided bone regeneration (GBR) in experimental dehiscence defects. MATERIALS AND METHODS: Maxillary second incisors (I2) in 9 dogs were extracted. Six weeks later, implants were inserted and experimental dehiscence defects (5 × 3 mm) created on the buccal aspect. The defects and surrounding bone were grafted with deproteinized bovine bone mineral. One side (test) was covered with a resorbable collagen membrane whereas the contralateral side (control) was not. After 6 weeks, histomorphometrical analysis was performed to evaluate: (a) first bone-to-implant contact (fBIC), (b) buccal bone thickness at 1 mm increments from implant shoulder, (c) regenerated area (RA), (d) area and percentages of new bone (B), bone substitute (BS) and mineralized tissue (MT). RESULTS: The histological appearance was similar between test and control sites. At central and lateral sections, there were no differences between groups for fBIC, buccal bone thickness, RA, BS, B, %B, MT and %MT. At central sections, membrane use favoured more %BS and %MT (p = 0.052). There was significantly more B, %B and MT at lateral compared to central sections. CONCLUSIONS: Membrane use tended to retain more bone substitute, but had no effect on new bone ingrowth. Lateral sections showed significantly more bone ingrowth and mineralized tissue compared to central sections, confirming that new bone ingrowth takes place mainly from the lateral walls of the defect. CLINICAL RELEVANCE: Preclinical research to clarify the dynamics of bone regeneration in GBR procedures is relevant in clinical practice.


Assuntos
Substitutos Ósseos , Membranas Artificiais , Animais , Bovinos , Cães , Substitutos Ósseos/farmacologia , Regeneração Óssea , Incisivo , Regeneração Tecidual Guiada Periodontal/métodos , Maxila/cirurgia , Implantes Dentários , Colágeno , Deiscência da Ferida Operatória , Minerais
6.
J Esthet Restor Dent ; 36(7): 967-975, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38534037

RESUMO

OBJECTIVE: To evaluate the profilometric, esthetic, and patient-reported outcomes of peri-implant tissues in the maxillary anterior esthetic zone following guided bone regeneration (GBR) using the L-shape technique combined with delayed connective tissue grafting (CTG). MATERIALS AND METHODS: Profilometric and pink esthetic score (PES) measurements were performed at the time of implant surgery with GBR (T0) and at the 1- (T1), 2- (T2), and 3-year (T3) follow-up. Patient-reported outcomes were also assessed using the Oral Health Impact Profile-14 (OHIP-14) questionnaire. Statistical analysis over 3 years of follow-up assessed changes at time points (T0, T1, T2, and T3) and time periods (T0-T1, T0-T2, and T0-T3) using the Wilcoxon signed-rank test. RESULTS: A total of 12 patients (57.5 ± 12.3 years) were included in this study. The mean profilometric change in peri-implant tissues over the 3-year follow-up period was 3.49 ± 1.11 mm, and the buccal contours were not significantly different between the comparison periods. The PES remained stable, while all OHIP-14 domain scores improved significantly. CONCLUSION: Simultaneous implant placement and GBR using the L-shape technique combined with delayed CTG in the maxillary anterior region provides stable buccal profiles and consistent esthetics and improves patient-reported quality of life over a 3-year period. CLINICAL SIGNIFICANCE: This study demonstrated that GBR using the L-shape technique combined with delayed CTG in the maxillary anterior region improved the buccal profile, esthetics, and patient-reported quality of life.


Assuntos
Tecido Conjuntivo , Estética Dentária , Maxila , Medidas de Resultados Relatados pelo Paciente , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Tecido Conjuntivo/transplante , Adulto
7.
Periodontol 2000 ; 93(1): 9-25, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38194351

RESUMO

Bone augmentation procedures are frequent today in implant patients, since an implant should be circumferentially anchored in bone at completion of bone healing to have a good long-term stability. The best documented surgical technique to achieve this goal is guided bone regeneration (GBR) utilizing barrier membranes in combination with bone fillers. This clinical review paper reflects 35 years of development and progress with GBR. In the 1990s, GBR was developed by defining the indications for GBR, examining various barrier membranes, bone grafts, and bone substitutes. Complications were identified and reduced by modifications of the surgical technique. Today, the selection criteria for various surgical approaches are much better understood, in particular, in post-extraction implant placement. In the majority of patients, biodegradable collagen membranes are used, mainly for horizontal bone augmentation, whereas bioinert PTFE membranes are preferred for vertical ridge augmentation. The leading surgeons are using a composite graft with autogenous bone chips to accelerate bone formation, in combination with a low-substitution bone filer to better maintain the augmented bone volume over time. In addition, major efforts have been made since the millenium change to reduce surgical trauma and patient morbidity as much as possible. At the end, some open questions related to GBR are discussed.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Humanos , Substitutos Ósseos/uso terapêutico , Transplante Ósseo , Assistência Odontológica , Pesquisa
8.
J Pharm Bioallied Sci ; 16(Suppl 2): S1007-S1011, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882837

RESUMO

Introduction: Various studies have suggested use of socket grafting materials after dental extraction for socket preservation. However, there is no single material that has been accepted as standard for preserving the socket. The purpose of this systematic review was to analyze the evidence for the use of biphasic calcium phosphate for socket regeneration. Materials and Methods: The team conducted a systematic literature search in accordance with the protocol registered at PROSPERO. PubMed, OVID, and EMBASE databases were used in the search. The articles were then screened using RAYYAN open-source software for the synthesis of evidence. Results: Of the 240 articles found in the search, two studies could be included in the review. Conclusion: Biphasic calcium phosphate (60% hydroxyapatite, HA and 40% beta-tricalcium phosphate, ß-TCP) has a significant effect in the socket preservation and quality of bone regeneration.

9.
J Funct Morphol Kinesiol ; 9(2)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38651429

RESUMO

The development of biomaterials in recent years has made it possible to broaden their use in the surgical field. Although iliac crest bone graft harvesting currently remains the gold standard as an autograft, the properties of hydroxyapatite bone substitutes appear to be beneficial. The first fundamental step to consider is the safety of using these devices. The purpose of this retrospective cohort study is to consider all the adverse events observed in our population and assess their relationships with the bone substitute device. The population analyzed consisted of patients undergoing trauma osteosynthesis with at least one implanted porous hydroxyapatite device. We considered a court of 114 patients treated at "Azienda Ospedaliera Universitaria di Ferrara-U.O. di Ortopedia e Traumatologia" in the period from January 2015 to December 2022. Upon analyzing our population, no adverse events related to the device emerged. Taking into consideration different study groups from other National Hospital Centers, no critical issues were detected except for three cases of extrusion of the biomaterial. It is necessary to clarify that bone substitutes cannot replace compliance with the correct principles linked to the biomechanics of osteosynthesis. This report outlines a safety profile for the use of these devices as bone substitutes in trauma orthopedic surgery.

10.
Sci Rep ; 14(1): 19055, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154029

RESUMO

Beta-tricalcium phosphate (ß-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, ß-TCP scaffolds containing varying concentrations (0.25-1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of ß-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated ß-TCP suspensions exhibited faster structural recovery compared to pure ß-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of ß-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified ß-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.


Assuntos
Fosfatos de Cálcio , Nanotubos de Carbono , Engenharia Tecidual , Alicerces Teciduais , Fosfatos de Cálcio/química , Nanotubos de Carbono/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Animais , Camundongos , Linhagem Celular , Osso e Ossos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais , Regeneração Óssea/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Viscosidade
11.
Int J Implant Dent ; 10(1): 9, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372934

RESUMO

PURPOSE: Tricalcium phosphate (TCP) has osteoconductive ability and reportedly offers similar clinical results as autogenous bone grafts in dental implant treatment. However, few reports quantify temporal changes in augmented bone volume after sinus augmentation. We aimed to establish a three-dimensional (3D) quantification method to assess bone volume after sinus augmentation and to evaluate biocompatibility of the TCP plate. METHODS: Maxillary sinus floor augmentation was performed employing the lateral window technique, and plate-shaped ß-TCP (TCP plate) was used instead of granular bone grafting materials. After lifting the sinus membrane, the TCP plate was inserted and supported by dental implants or micro-screws. The changes in bone volumes in the maxillary sinus before and after surgery were recorded using cone-beam computed tomography, saved as Digital Imaging and Communications in Medicine-formatted files, and transformed to Standard Triangle Language (STL)-formatted files. Pre- and post-operative STL data of bone volume were superimposed, and the augmented bone volume was calculated. Moreover, changes in bone volumes, TCP plate resorption rates, and bone heights surrounding the implants were three dimensionally quantified. RESULTS: Fifteen implants in nine subjects were included in this study. TCP plates secured long-term space making, with results similar to those of granular bone substitutes. Newly formed bone was identified around the implant without bone graft material. TCP plate was absorbed and gradually disappeared. CONCLUSIONS: A novel 3D quantification method was established to evaluate changes in bone volume. Clinical application of TCP plate in sinus augmentation could be a better procedure in terms of prognosis and safety.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Levantamento do Assoalho do Seio Maxilar , Humanos , Substitutos Ósseos/uso terapêutico , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Placas Ósseas
12.
Materials (Basel) ; 17(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255481

RESUMO

While particulate bone substitute materials are applied in a variety of augmentation procedures, standardized defects are being used for preclinical testing. This in vitro study evaluated the density and homogeneity of a particulate bone substitute in ridge preservation procedures. Premolars and molars were extracted in ten semimandibles of minipig cadavers. Light body impression material was used for determining the volume of the extraction sites followed by augmentation with particulate material, thereby weighing the graft material needed. Microradiographs and histologic sections were obtained for evaluating the homogeneity and density of the augmentation material. Statistical analyses were based on Shapiro-Wilk tests, Spearman's rho and one sample Wilcoxon test followed by Bonferroni-Holm correction for multiple testing (α = 0.05). Based on 103 single alveoli evaluated, the mean volume determined was 0.120 cm3 requiring a mean amount of graft material of 0.155 g. With only three exceptions, all parameters (volume, mass of augmentation material, density and homogeneity) correlated significantly (p < 0.020). The apical parts of the alveoli showed reduced density as compared to the middle parts (p < 0.001) and the homogeneity of the augmentation material was also lower as compared to the middle (p < 0.001) and cervical parts (p

13.
Cureus ; 16(7): e63901, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39100051

RESUMO

A 42-year-old man diagnosed with chondrosarcoma of the proximal femur underwent limb salvage by compartmental excision of the lesion and reconstruction with a custom-made hip prosthesis. The critical-size defect in the proximal femur was reconstructed with ceramic hemicylinders that were tied in place with sutures and augmented with two fibular strut grafts and an autologous cancellous iliac crest bone graft. A fourteen-year follow-up of the same case revealed that substituted ceramic matrices can be converted into dynamic, metabolically active, living bone.

14.
Dent Mater J ; 43(4): 573-581, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853007

RESUMO

Granular type of bone substitutes is currently used in the field of dentistry to restore alveolar bone defects. However, the migration of the granules from the implantation site is still an unresolved issue. In this study, the feasibility to fabricate self-setting calcium sulfate hemihydrate (CSH) granules using different ranges of loading pressure: CSH(0), CSH(50), CSH(100), and CSH(150) was investigated with the hypothesis that CSH granules with reduced microporosity can inhibit the rapid dissolution rate of the calcium sulfate dihydrate (CSD) set blocks and induce bone regeneration. After 4 weeks of implantation, the granules were mostly replaced with new bone although no significant differences were observed. Nevertheless, the granules demonstrated the ability to set within the bone defect. It is therefore concluded that the setting ability of calcium sulfate can contribute to address the issue of migration of the granules and provide a useful guide for designing setting bone substitutes.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Sulfato de Cálcio , Teste de Materiais , Sulfato de Cálcio/química , Porosidade , Substitutos Ósseos/química , Regeneração Óssea/efeitos dos fármacos , Animais
15.
Front Surg ; 11: 1278421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486794

RESUMO

Calcium sulfate and calcium sulfate-based biomaterials have been widely used in non-load-bearing bone defects for hundreds of years due to their superior biocompatibility, biodegradability, and non-toxicity. However, lower compressive strength and rapid degradation rate are the main limitations in clinical applications. Excessive absorption causes a sharp increase in sulfate ion and calcium ion concentrations around the bone defect site, resulting in delayed wound healing and hypercalcemia. In addition, the space between calcium sulfate and the host bone, resulting from excessively rapid absorption, has adverse effects on bone healing or fusion techniques. This issue has been recognized and addressed. The lack of sufficient mechanical strength makes it challenging to use calcium sulfate and calcium sulfate-based biomaterials in load-bearing areas. To overcome these defects, the introduction of various inorganic additives, such as calcium carbonate, calcium phosphate, and calcium silicate, into calcium sulfate is an effective measure. Inorganic materials with different physical and chemical properties can greatly improve the properties of calcium sulfate composites. For example, the hydrolysis products of calcium carbonate are alkaline substances that can buffer the acidic environment caused by the degradation of calcium sulfate; calcium phosphate has poor degradation, which can effectively avoid the excessive absorption of calcium sulfate; and calcium silicate can promote the compressive strength and stimulate new bone formation. The purpose of this review is to review the poor properties of calcium sulfate and its complications in clinical application and to explore the effect of various inorganic additives on the physicochemical properties and biological properties of calcium sulfate.

16.
Bioact Mater ; 36: 256-271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487704

RESUMO

Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been FDA-approved for lumbar fusion, but supraphysiologic initial burst release due to suboptimal carrier and late excess bone resorption caused by osteoclast activation have limited its clinical usage. One strategy to mitigate the pro-osteoclast side effect of rhBMP-2 is to give systemic bisphosphonates, but it presents challenges with systemic side effects and low local bioavailability. The aim of this in vivo study was to analyze if posterolateral spinal fusion (PLF) could be improved by utilizing a calcium sulfate/hydroxyapatite (CaS/HA) carrier co-delivering rhBMP-2 and zoledronic acid (ZA). Six groups were allocated (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, and CaS/HA + BMP-2 + local ZA). 10-week-old male Wistar rats, were randomly assigned to undergo L4-L5 PLF with implantation of group-dependent scaffolds. At 3 and 6 weeks, the animals were euthanized for radiography, µCT, histological staining, or biomechanical testing to evaluate spinal fusion. The results demonstrated that the CaS/HA biomaterial alone or in combination with local or systemic ZA didn't support PLF. However, the delivery of rhBMP-2 significantly promoted PLF. Combining systemic ZA with BMP-2 didn't enhance spinal fusion. Notably, the co-delivery of rhBMP-2 and ZA using the CaS/HA carrier significantly enhanced and accelerated PLF, without inhibiting systemic bone turnover, and potentially reduced the dose of rhBMP-2. Together, the treatment regimen of CaS/HA biomaterial co-delivering rhBMP-2 and ZA could potentially be a safe and cost-effective off-the-shelf bioactive bone substitute to enhance spinal fusion.

17.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456309

RESUMO

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Assuntos
Substitutos Ósseos , Quitosana , Apatitas/farmacologia , Apatitas/química , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Durapatita , Quitosana/farmacologia , Quitosana/química , Difração de Raios X , Força Compressiva
18.
Zhongguo Gu Shang ; 37(3): 300-5, 2024 Mar 25.
Artigo em Zh | MEDLINE | ID: mdl-38515419

RESUMO

OBJECTIVE: To explore clinical efficacy of autologous bone grafts and bone substitute for the treatment of tibial plateau fractures by Meta analysis. METHODS: Controlled clinical studies on autogenous bone transplantation and bone substitutes in treating tibial plateau fractures published on PubMed,Web of Science,CNKI,Wanfang and other databases from January 2005 to August 2022 were searched by computer. Literature screening and data extraction were performed according to randomized controlled trial(RCT),and the quality of RCT were evaluated by using intervention meta-analysis criteria in Cochrane manual. Meta-analysis of joint depression,secondary collapse rate of articular surface,blood loss,operative time and infection rate between two methods were performed by Rev Man 5.3 software. RESULTS: Seven RCT studies (424 patients) were included,296 patients in bone replacement group and 128 patients in autograft group. Operative time [MD=-16.79,95%CI(-25.72,-7.85),P=0.000 2] and blood loss[MD=-70.49,95%CI(-79.34,-61.65),P<0.000 01] between two groups had statistically differences,while joint depression[MD=-0.17,95%CI(-0.91,0.58),P=0.66],secondary collapse rate of joint surface[RR=-0.74, 95%CI(0.35,1.57),P=0.43],infection rate [RR=1.21,95%CI(0.31,4.70),P=0.78] between two groups had no differences. CONCLUSION: The effects of bone substitute and autograft for the treatment of tibial plateau fracture have similar effects in terms of joint depression,secondary articular surface collapse rate and infection rate. However,compared with autologous bone transplantation,bone replacement could reduce blood loss and shorten operation time.


Assuntos
Substitutos Ósseos , Fraturas da Tíbia , Fraturas do Planalto Tibial , Humanos , Substitutos Ósseos/uso terapêutico , Transplante Ósseo/métodos , Fraturas da Tíbia/cirurgia , Resultado do Tratamento , Fixação Interna de Fraturas/métodos
19.
Materials (Basel) ; 17(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591482

RESUMO

A pre-hydrated thermosensitive collagenated biomaterial which sets at body temperature and maintains the space of the missing alveolar bone volume, OsteoBiol GTO® (GTO), has been released as a bone substitute. This study was designed to check its angiogenic and osteogenic potentials compared to OsteoBiol Gen-Os® (Gen-Os) and Geistlich Bio-Oss® (Bio-Oss). Samples of materials were incubated in culture media to obtain the extracts. Collagen release was measured in the extracts, which were used to investigate human periodontal ligament (hPDL) cell proliferation (MTT), colonization (Scratch assays) and growth factor release (ELISA). The effects on endothelial cell proliferation (MTT) and organization (Matrigel® assays) were also studied. Finally, endothelial and mesenchymal Stem Cell (hMSC) recruitment (Boyden Chambers) were investigated, and hMSC Alkaline Phosphatase (ALP) activity was measured. A higher collagen concentration was found in GTO extract, which led to significantly higher hPDL cell proliferation/colonization. All materials increased VEGF/FGF-2 growth factor secretion, endothelial cell recruitment, proliferation, and organization, but the increase was highest with GTO. All materials increased hMSC recruitment and ALP activity. However, the increase was highest with collagenated GTO and Gen-Os, which enhanced C5a and BMP-2 secretion. Overall, GTO has higher angiogenic/osteogenic potentials than the collagenated Gen-Os and the anorganic Bio-Oss. It provides a suitable scaffold for endothelial and mesenchymal stem cell recruitment, which represent essential bone regeneration requirements.

20.
Pharmaceutics ; 16(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399345

RESUMO

Bone defects represent an everyday challenge for clinicians who work in the fields of orthopedic surgery, maxillofacial and oral surgery, otorhinolaryngology, and dental implantology. Various bone substitutes have been developed and utilized, according to the needs of bone reconstructive surgery. Carbonate apatite has gained popularity in recent years, due to its excellent tissue behavior and osteoconductive potential. This systematic review aims to evaluate the role of carbonate apatite in bone reconstructive surgery and tissue engineering, analyze its advantages and limitations, and suggest further directions for research and development. The Web of Science, PubMed, and Scopus electronic databases were searched for relevant review articles, published from January 2014 to 21 July 2023. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eighteen studies were included in the present review. The biological properties and medical applications of carbonate apatite (CO3Ap) are discussed and evaluated. The majority of articles demonstrated that CO3Ap has excellent biocompatibility, resorbability, and osteoconductivity. Furthermore, it resembles bone tissue and causes minimal immunological reactions. Therefore, it may be successfully utilized in various medical applications, such as bone substitution, scaffolding, implant coating, drug delivery, and tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA