Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(14): 2633-2649.e7, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35793674

RESUMO

Lysosomal membrane permeabilization (LMP) is an underlying feature of diverse conditions including neurodegeneration. Cells respond by extensive ubiquitylation of membrane-associated proteins for clearance of the organelle through lysophagy that is facilitated by the ubiquitin-directed AAA-ATPase VCP/p97. Here, we assessed the ubiquitylated proteome upon acute LMP and uncovered a large diversity of targets and lysophagy regulators. They include calponin-2 (CNN2) that, along with the Arp2/3 complex, translocates to damaged lysosomes and regulates actin filaments to drive phagophore formation. Importantly, CNN2 needs to be ubiquitylated during the process and removed by VCP/p97 for efficient lysophagy. Moreover, we identified the small heat shock protein HSPB1 that assists VCP/p97 in the extraction of CNN2 and show that other membrane regulators including SNAREs, PICALM, AGFG1, and ARL8B are ubiquitylated during lysophagy. Our data reveal a framework of how ubiquitylation and two effectors, VCP/p97 and HSPB1, cooperate to protect cells from the deleterious effects of LMP.


Assuntos
Macroautofagia , Ubiquitina , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Lisossomos/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
2.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564309

RESUMO

In Drosophila, only one cell in a multicellular female germline cyst is specified as an oocyte and a similar process occurs in mammals. The symmetry-breaking cue for oocyte selection is provided by the fusome, a tubular structure connecting all cells in the cyst. The Drosophila spectraplakin Shot localises to the fusome and translates its asymmetry into a polarised microtubule network that is essential for oocyte specification, but how Shot recognises the fusome is unclear. Here, we demonstrate that the actin-binding domain (ABD) of Shot is necessary and sufficient to localise Shot to the fusome and mediates Shot function in oocyte specification together with the microtubule-binding domains. The calponin homology domain 1 of the Shot ABD recognises fusomal F-actin and requires calponin homology domain 2 to distinguish it from other forms of F-actin in the cyst. By contrast, the ABDs of utrophin, Fimbrin, Filamin, Lifeact and F-tractin do not recognise fusomal F-actin. We therefore propose that Shot propagates fusome asymmetry by recognising a specific conformational state of F-actin on the fusome.


Assuntos
Actinas , Drosophila , Animais , Citoesqueleto de Actina , Filaminas , Mamíferos , Oócitos
3.
J Cell Mol Med ; 28(1): e18025, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147352

RESUMO

Smooth muscle cell (SMC) contraction and vascular tone are modulated by phosphorylation and multiple modifications of the thick filament, and thin filament regulation of SMC contraction has been reported to involve extracellular regulated kinase (ERK). Previous studies in ferrets suggest that the actin-binding protein, calponin 1 (CNN1), acts as a scaffold linking protein kinase C (PKC), Raf, MEK and ERK, promoting PKC-dependent ERK activation. To gain further insight into this function of CNN1 in ERK activation and the regulation of SMC contractility in mice, we generated a novel Calponin 1 knockout mouse (Cnn1 KO) by a single base substitution in an intronic CArG box that preferentially abolishes expression of CNN1 in vascular SMCs. Using this new Cnn1 KO mouse, we show that ablation of CNN1 has two effects, depending on the cytosolic free calcium level: (1) in the presence of elevated intracellular calcium caused by agonist stimulation, Cnn1 KO mice display a reduced amplitude of stress and stiffness but an increase in agonist-induced ERK activation; and (2) during intracellular calcium depletion, in the presence of an agonist, Cnn1 KO mice exhibit increased duration of SM tone maintenance. Together, these results suggest that CNN1 plays an important and complex modulatory role in SMC contractile tone amplitude and maintenance.


Assuntos
Calponinas , Músculo Liso Vascular , Animais , Camundongos , Músculo Liso Vascular/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Furões/metabolismo , Contração Muscular , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo
4.
Biotechnol Bioeng ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279163

RESUMO

The influence of extracellular matrix (ECM) stiffness on cell behavior is a well-established phenomenon. Tumor development is associated with the stiffening of the ECM. However, the understanding of the role of biomechanical behavior and mechanotransduction pathways in the oncogenesis of tumor cells remains limited. In this study, we constructed in vitro models using Polydimethylsiloxane substrates to create soft and stiff substrates. We then evaluated the migration of lung cancer cells A549 using video-microscopy and transwell assays. The mechanical properties were assessed through the utilization of atomic force microscopy, Optical Magnetic Twisting Cytometry, and traction force analysis. Additionally, the expression of Calponin 3 (CNN3) was evaluated using reverse transcription­quantitative PCR and immunofluorescence techniques. Our observations indicate that the presence of a stiff substrate enhances A549 motility, as evidenced by increased stiffness and traction force in A549 cells on the stiff substrate. Furthermore, we observed a decrease in CNN3 expression in A549 cells on the stiff substrate. Notably, when CNN3 was overexpressed, it effectively inhibited the migration and invasion of A549 cells on the stiff substrate. The results of our study provide novel perspectives on the mechanisms underlying cancer cell migration in response to substrate mechanical properties.

5.
Histopathology ; 83(2): 252-263, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37067767

RESUMO

AIMS: Due to its rarity and non-specific clinical and pathological features, low-grade adenosquamous carcinoma (LGASC) of the breast continues to pose diagnostic challenges. Unlike other triple-negative breast carcinomas, LGASC tends to have an indolent clinical behaviour. It is essential to recognise this lesion for accurate diagnosis and appropriate management. METHODS AND RESULTS: Twenty-five cases of LGASC were identified in our archives and collaborating institutes. Cases of LGASC with dominant coexisting other type carcinomas were excluded. We studied the clinical presentation, morphological features, patterns of the commonly used immunohistochemical stains and follow-up. In our cohort, LGASC was commonly located at the outer aspect of the breast and associated with intraductal papilloma. The morphology of LGASC is characterised by infiltrating small glands and nests with variable squamous differentiation. We also found cuffing desmoplastic (fibrolamellar) stromal change in 75% of patients and peripheral lymphocytic aggregates in 87.5% of patients. P63 and smooth muscle myosin (SMM) were the most common myoepithelial markers used to assist in diagnosis. P63 often stained peripheral tumour cells surrounding invasive glands (circumferential staining in 80% of the cases), mimicking myoepithelial cells. It also stained the small nests with squamous differentiation. However, SMM was negative in 63% of the cases. The vast majority of our cases were triple-negative; only a few had focal and weak expressions of ER and PR. One patient who did not have excision developed lymph node metastasis. Most patients underwent excision or mastectomy with negative margins as surgical treatment; there were no recurrences or metastases in these patients with clinical follow-ups up to 108 months. CONCLUSIONS: LGASC has some unique, although not entirely specific, morphological features and immunohistochemical staining patterns. Fibrolamellar stromal change, peripheral lymphocytic aggregates and variable staining of p63 and SMM are valuable features to facilitate the diagnosis.


Assuntos
Neoplasias da Mama , Carcinoma Adenoescamoso , Carcinoma de Células Escamosas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Carcinoma Adenoescamoso/diagnóstico , Carcinoma Adenoescamoso/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Mastectomia , Mama/patologia , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma de Células Escamosas/patologia , Biomarcadores Tumorais/análise
6.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L348-L364, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018804

RESUMO

Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, how these transformed mesothelial cells contribute to lung fibrosis remains unclear. Here, we investigated the mechanism of contractile myofibroblast differentiation of PMCs. Transforming growth factor-ß (TGF-ß) induced marked upregulation of calponin 1 expression, which was correlated with notable cytoskeletal rearrangement in human PMCs (HPMCs) to produce stress fibers. Downregulation of calponin 1 expression reduced stress fiber formation. Interestingly, induced stress fibers predominantly contain α-smooth muscle actin (αSMA) associated with calponin 1 but not ß-actin. Calponin 1-associated stress fibers also contained myosin II and α-actinin. Furthermore, focal adhesions were aligned with the produced stress fibers. These results suggest that calponin 1 facilitates formation of stress fibers that resemble contractile myofibrils. Supporting this notion, TGF-ß significantly increased the contractile activity of HPMCs, an effect that was abolished by downregulation of calponin 1 expression. We infer that differentiation of HPMCs to contractile myofibroblasts facilitates stiffness of scar tissue in pleura to promote pleural fibrosis (PF) and that upregulation of calponin 1 plays a central role in this process.


Assuntos
Miofibroblastos , Pleura , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Células Cultivadas , Fibrose , Humanos , Proteínas dos Microfilamentos , Miofibroblastos/metabolismo , Pleura/patologia , Fator de Crescimento Transformador beta/farmacologia , Calponinas
7.
J Cell Sci ; 133(17)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32801124

RESUMO

Tubulin enters the cilium by diffusion and motor-based intraflagellar transport (IFT). However, the respective contribution of each route in providing tubulin for axonemal assembly remains unknown. Using Chlamydomonas, we attenuated IFT-based tubulin transport of GFP-ß-tubulin by altering the IFT74N-IFT81N tubulin-binding module and the C-terminal E-hook of tubulin. E-hook-deficient GFP-ß-tubulin was incorporated into the axonemal microtubules, but its transport frequency by IFT was reduced by ∼90% in control cells and essentially abolished when the tubulin-binding site of IFT81 was incapacitated. Despite the strong reduction in IFT, the proportion of E-hook-deficient GFP-ß-tubulin in the axoneme was only moderately reduced. In vivo imaging showed more GFP-ß-tubulin particles entering cilia by diffusion than by IFT. Extrapolated to endogenous tubulin, the data indicate that diffusion provides most of the tubulin required for axonemal assembly. We propose that IFT of tubulin is nevertheless needed for ciliogenesis, because it augments the tubulin pool supplied to the ciliary tip by diffusion, thus ensuring that free tubulin there is maintained at the critical concentration for plus-end microtubule assembly during rapid ciliary growth.


Assuntos
Chlamydomonas , Tubulina (Proteína) , Axonema/metabolismo , Transporte Biológico , Chlamydomonas/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887340

RESUMO

We describe the development of a preparative method to isolate molluscan catch muscle, calponin. This method is based on the ability of calponin to interact with actin in a temperature-dependent manner. After extracting thin filaments, as previously described, the extract was ultracentrifuged at 2 °C. While other surface proteins of thin filaments co-precipitated with actin, calponin, along with some minor contaminants, remained in the supernatant. Calponin was purified through cation-exchange chromatography. The yield of pure protein was four-fold higher than that achieved through high-temperature extraction. To evaluate functionally isolated proteins, we determined the effect of calponin on Mg2+-ATPase activity of hybrid and non-hybrid actomyosin. The degree of ATPase inhibition was consistent with previously published data but strongly dependent on the environmental conditions and source of actin and myosin used. Furthermore, at low concentrations, calponin could induce the ATPase activity of hybrid actomyosin. This result was consistent with data indicating that calponin can modulate actin conformation to increase the relative content of "switched on" actin monomers in thin filaments. We assume that calponin obtained by the isolation method proposed herein is a fully functional protein that can both inhibit and induce the ATPase activity.


Assuntos
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos , Músculo Liso/metabolismo , Miosinas/metabolismo , Calponinas
9.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806028

RESUMO

Due to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of Photorhabdus spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis. It has been shown that the fully modified F-actin is resistant to depolymerization by cofilin and gelsolin, but their effects on partially modified actin were not explored. We found that only F-actin unprotected by tropomyosin is the physiological TccC3 substrate. Yet, ADP-ribosylated G-actin can be produced upon cofilin-accelerated F-actin depolymerization, which was only mildly inhibited in partially modified actin. The affinity of TccC3-ADP-ribosylated G-actin for profilin and thymosin-ß4 was weakened moderately but sufficiently to potentiate spontaneous polymerization in their presence. Interestingly, the Arp2/3-mediated nucleation was also potentiated by T148-ADP-ribosylation. Notably, even partially modified actin showed reduced bundling by plastins and α-actinin. In agreement with the role of these and other tandem calponin-homology domain actin organizers in the assembly of the cortical actin network, TccC3 induced intense membrane blebbing in cultured cells. Overall, our data suggest that TccC3 imposes a complex action on the cytoskeleton by affecting F-actin nucleation, recycling, and interaction with actin-binding proteins involved in the integration of actin filaments with each other and cellular elements.


Assuntos
Photorhabdus , ADP Ribose Transferases/química , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Difosfato de Adenosina/metabolismo
10.
Am J Physiol Cell Physiol ; 321(2): C355-C368, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133238

RESUMO

Calponin 2 is an actin cytoskeleton-associated protein and plays a role in regulating cell motility-related functions such as phagocytosis, migration, and division. We previously reported that overexpression of calponin 2 inhibits the rate of cell proliferation. To investigate the underlying mechanism, our present study found that the levels of endogenous calponin 2 in NIH3T3 and HEK293 cells rapidly decreased before cell division characterized by an absence at the actin contractile ring. In cells lacking endogenous calponin 2, transfective expression of GFP-fusion calponin 2 inhibited cell proliferation similar to that of nonfusion calponin 2. Fluorescent imaging studies of mitotic cells indicated that a proper level of calponin 2 expression and effective degradation during cytokinesis are necessary for normal cell division. Computer-assisted dynamic image analysis of dividing cells revealed that overexpression of calponin 2 significantly affects motility and shape behaviors of cells only on the interval from the start of anaphase to the start of cytokinesis, i.e., the pre-cytokinesis phase, but not on the interval from the start of cytokinesis to 50% completion of cytokinesis. The pre-cytokinesis degradation of calponin 2 was attenuated by MG132 inhibition of the ubiquitin proteasome and inhibitor of protein kinase C (PKC), suggesting that PKC phosphorylation-triggered degradation of calponin 2 could determine the rate of cytokinesis. The novel role of calponin 2 in regulating the rate of cytokinesis may be targeted for therapeutic applications such as in an inhibition of malignant tumor growth.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Citocinese/fisiologia , Proteínas dos Microfilamentos/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Fosforilação
11.
J Biol Chem ; 295(34): 12014-12027, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32554465

RESUMO

Multicellular organisms have multiple genes encoding calponins and calponin-related proteins, some of which are known to regulate actin cytoskeletal dynamics and contractility. However, the functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, functionally overlaps with UNC-87 in maintaining actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro We found that CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad in which UNC-87 is also expressed. unc-87 mutation caused cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone caused no detectable phenotypes. However, simultaneous clik-1 and unc-87 depletion caused sterility because of ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundled actin filaments, whereas CLIK-1 bound to actin filaments without bundling them and antagonized UNC-87-mediated filament bundling. We noticed that UNC-87 and CLIK-1 share common functions that inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. In conclusion, partially redundant functions of UNC-87 and CLIK-1 in ovulation are likely mediated by their common actin-regulatory activities, but their distinct actin-bundling activities suggest that they also have different biological functions.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Ovulação , Citoesqueleto de Actina/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citoesqueleto/genética , Feminino , Proteínas Musculares/genética
12.
Arterioscler Thromb Vasc Biol ; 40(7): 1651-1663, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32404006

RESUMO

OBJECTIVE: SMAD3 pathogenic variants are associated with the development of thoracic aortic aneurysms. We sought to determine the role of SMAD3 in lineage-specific vascular smooth muscle cells (VSMCs) differentiation and function. Approach and Results: SMAD3 c.652delA, a frameshift mutation and nonsense-mediated decay, was introduced in human-induced pluripotent stem cells using CRISPR-Cas9. The wild-type and SMAD3-/- (c.652delA) human-induced pluripotent stem cells were differentiated into cardiovascular progenitor cells or neural crest stem cells and then to lineage-specific VSMCs. Differentiation, contractility, extracellular matrix synthesis, and TGF-ß (transforming growth factor-ß) signaling of the differentiated VSMCs were analyzed. The homozygous frameshift mutation resulted in SMAD3 deficiency and was confirmed in human-induced pluripotent stem cells by Sanger sequencing and immunoblot analysis. In cardiovascular progenitor cell-VSMCs, SMAD3 deletion significantly disrupted canonical TGF-ß signaling and decreased gene expression of VSMC markers, including SM α-actin, myosin heavy chain 11, calponin-1, SM22α, and key controlling factors, SRF and myocardin, but increased collagen expression. The loss of SMAD3 significantly decreased VSMC contractility. In neural crest stem cells-VSMCs, SMAD3 deficiency did not significantly affect the VSMC differentiation but decreased ELN (elastin) expression and increased phosphorylated SMAD2. Expression of mir-29 was increased in SMAD3-/- VSMCs, and inhibition of mir-29 partially rescued ELN expression. CONCLUSIONS: SMAD3-dependent TGF-ß signaling was essential for the differentiation of cardiovascular progenitor cell-VSMCs but not for the differentiation of neural crest stem cell-VSMCs. The lineage-specific TGF-ß responses in human VSMCs may potentially contribute to the development of aortic root aneurysms in patients with SMAD3 mutations.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Smad3/deficiência , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/fisiopatologia , Células Cultivadas , Elastina/genética , Elastina/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Mutação da Fase de Leitura , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular , Vasoconstrição
13.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884689

RESUMO

LMO7 is a multifunctional PDZ-LIM protein that can interact with different molecular partners and is found in several intracellular locations. The aim of this work was to shed light on LMO7 evolution, alternative transcripts, protein structure and gene regulation through multiple in silico analyses. We also explored the intracellular distribution of the LMO7 protein in chicken and zebrafish embryonic skeletal muscle cells by means of confocal fluorescence microscopy. Our results revealed a single LMO7 gene in mammals, sauropsids, Xenopus and in the holostean fish spotted gar while two lmo7 genes (lmo7a and lmo7b) were identified in teleost fishes. In addition, several different transcripts were predicted for LMO7 in human and in major vertebrate model organisms (mouse, chicken, Xenopus and zebrafish). Bioinformatics tools revealed several structural features of the LMO7 protein including intrinsically disordered regions. We found the LMO7 protein in multiple intracellular compartments in chicken and zebrafish skeletal muscle cells, such as membrane adhesion sites and the perinuclear region. Curiously, the LMO7 protein was detected within the nuclei of muscle cells in chicken but not in zebrafish. Our data showed that a conserved regulatory element may be related to muscle-specific LMO7 expression. Our findings uncover new and important information about LMO7 and open new challenges to understanding how the diverse regulation, structure and distribution of this protein are integrated into highly complex vertebrate cellular milieux, such as skeletal muscle cells.


Assuntos
Evolução Molecular , Proteínas com Domínio LIM/metabolismo , Modelos Moleculares , Fibras Musculares Esqueléticas/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Galinhas , Simulação por Computador , Humanos , Proteínas com Domínio LIM/genética , Camundongos , Modelos Animais , Conformação Proteica , Fatores de Transcrição/genética , Peixe-Zebra
14.
J Neuroinflammation ; 17(1): 202, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631435

RESUMO

BACKGROUND: Spinal cord injury (SCI) triggers the primary mechanical injury and secondary inflammation-mediated injury. Neuroinflammation-mediated insult causes secondary and extensive neurological damage after SCI. Microglia play a pivotal role in the initiation and progression of post-SCI neuroinflammation. METHODS: To elucidate the significance of LRCH1 to microglial functions, we applied lentivirus-induced LRCH1 knockdown in primary microglia culture and tested the role of LRCH1 in microglia-mediated inflammatory reaction both in vitro and in a rat SCI model. RESULTS: We found that LRCH1 was downregulated in microglia after traumatic SCI. LRCH1 knockdown increased the production of pro-inflammatory cytokines such as IL-1ß, TNF-α, and IL-6 after in vitro priming with lipopolysaccharide and adenosine triphosphate. Furthermore, LRCH1 knockdown promoted the priming-induced microglial polarization towards the pro-inflammatory inducible nitric oxide synthase (iNOS)-expressing microglia. LRCH1 knockdown also enhanced microglia-mediated N27 neuron death after priming. Further analysis revealed that LRCH1 knockdown increased priming-induced activation of p38 mitogen-activated protein kinase (MAPK) and Erk1/2 signaling, which are crucial to the inflammatory response of microglia. When LRCH1-knockdown microglia were adoptively injected into rat spinal cords, they enhanced post-SCI production of pro-inflammatory cytokines, increased SCI-induced recruitment of leukocytes, aggravated SCI-induced tissue damage and neuronal death, and worsened the locomotor function. CONCLUSION: Our study reveals for the first time that LRCH1 serves as a negative regulator of microglia-mediated neuroinflammation after SCI and provides clues for developing novel therapeutic approaches against SCI.


Assuntos
Mediadores da Inflamação/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia
15.
J Mol Cell Cardiol ; 129: 49-57, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30707993

RESUMO

Calponin is a family of actin filament-associated regulatory proteins. Among its three isoforms, calponin 1 is smooth muscle specific and calponin 2 is expressed in smooth muscle and certain non-muscle cells. Previous studies showed that calponin 1 knockout mice had detectable changes in the contractility of urogenital smooth muscle whereas other smooth muscles were less affected. To investigate the possibility that calponins 1 and 2 have overlapping functions in smooth muscle, we examined the effect of double knockout of calponin 1 and calponin 2 genes (Cnn1 and Cnn2) on smooth muscle functions. The results showed for the first time that calponin 1 and calponin 2 double knockout in mice does not cause lethality. The double knockout mice showed decreased systemic blood pressure, decreased force development and blunted length tension response in endothelial-removed aortic rings. A compensatory increase of calponin 1 was found in smooth muscle of Cnn2-/- mice but not vice versa. Cnn1-/- and Cnn2-/- double knockout aortic smooth muscle exhibits faster relaxation than that of wild type control. Double deletion or co-suppression of calponin 1 and calponin 2 in vascular smooth muscle to blunt myogenic response may present a novel approach to develop new treatment for hypertension.


Assuntos
Aorta/metabolismo , Aorta/fisiopatologia , Pressão Sanguínea , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Deleção de Genes , Proteínas dos Microfilamentos/deficiência , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Animais , Fenômenos Biofísicos , Proteínas de Ligação ao Cálcio/deficiência , Intestino Grosso/metabolismo , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Contração Muscular , Miofibrilas/metabolismo , Bexiga Urinária/metabolismo , Calponinas
16.
Arterioscler Thromb Vasc Biol ; 38(1): 154-163, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191928

RESUMO

OBJECTIVE: Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells. APPROACH AND RESULTS: PASMCs isolated from wild-type and NEP-/- mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP-/- PASMCs compared with wild-type. Rac and Rho (ras homology family member) levels and activity were higher in NEP-/- PASMCs, and ShRNA to Rac and Rho restored SM-protein, and attenuated the enhanced migration and proliferation of NEP-/- PASMCs. SM-gene repressors, p-Elk-1, and Klf4 (Kruppel lung factor 4), were higher in NEP-/- PASMCs and decreased by shRNA to Rac and Rho. Costimulation of wild-type PASMCs with PDGF (platelet-derived growth factor) and the NEP substrate, ET-1 (endothelin-1), increased Rac and Rho activity, and decreased SM-protein levels mimicking the NEP knock-out phenotype. Activation of Rac and Rho and downstream effectors was observed in lung tissue from NEP-/- mice and humans with chronic obstructive pulmonary disease. CONCLUSIONS: Sustained Rho activation in NEP-/- PASMCs is associated with a decrease in SM-protein levels and increased migration and proliferation. Inactivation of RhoGDI (Rho guanine dissociation inhibitor) and RhoGAP (Rho GTPase activating protein) by phosphorylation may contribute to prolonged activation of Rho in NEP-/- PASMCs. Rho GTPases may thus have a role in integration of signals between vasopeptides and growth factor receptors and could influence pathways that suppress SM-proteins to promote a synthetic phenotype.


Assuntos
Proteínas Musculares/biossíntese , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neprilisina/deficiência , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/biossíntese , Animais , Becaplermina/farmacologia , Proteínas de Ligação ao Cálcio/biossíntese , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotelina-1/farmacologia , Ativação Enzimática , Genótipo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/biossíntese , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neprilisina/genética , Fenótipo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais , Miosinas de Músculo Liso/biossíntese , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas rho de Ligação ao GTP/genética , Calponinas
17.
J Mol Cell Cardiol ; 121: 233-241, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30053524

RESUMO

Calcific aortic valve disease (CAVD) is a leading cause of cardiovascular mortality and lacks non-surgical treatment. The pathogenesis of CAVD involves perturbation of valvular cells by mechanical stimuli, including shear stress, pressure load and leaflet stretch, of which the molecular mechanism requires further elucidation. We recently demonstrated that knockout (KO) of Cnn2 gene that encodes calponin isoform 2, a mechanoregulated cytoskeleton protein, attenuates atherosclerosis in ApoE KO mice. Here we report that Cnn2 KO also decreased calcification of the aortic valve in ApoE KO mice, an established model of CAVD. Although myeloid cell-specific Cnn2 KO highly effectively attenuated vascular atherosclerosis that shares many pathogenic processes with CAVD, it did not reduce aortic valve calcification in ApoE KO mice. Indicating a function in the pathogenesis of CAVD, calponin 2 participates in myofibroblast differentiation that is a leading step in the development of CAVD. The aortic valves of ApoE KO mice exhibited increased expression of calponin 2 and smooth muscle actin (SMA), a hallmark of myofibroblasts. The expression of calponin 2 increased during myofibroblast-like differentiation of primary sheep aortic valve interstitial cells and during the osteogenic differentiation of mouse myofibroblasts. Cnn2 KO attenuated TGFß1-induced differentiation of myofibroblasts in culture as shown by the lower expression of SMA and less calcification than that of wild type (WT) cells. These findings present calponin 2 as a novel molecular target for the treatment and prevention of CAVD.


Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Calcinose/genética , Proteínas dos Microfilamentos/genética , Fator de Crescimento Transformador beta1/genética , Actinas/genética , Animais , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/fisiopatologia , Aterosclerose/fisiopatologia , Calcinose/fisiopatologia , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Células Cultivadas , Deleção de Genes , Humanos , Camundongos , Camundongos Knockout , Miofibroblastos/metabolismo , Osteogênese/genética , Calponinas
19.
J Cutan Pathol ; 45(12): 880-885, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30155964

RESUMO

BACKGROUND: Atypical fibroxanthomas (AFXs) and pleomorphic dermal sarcomas (PDSs) are UV-induced pleomorphic skin tumors with a non-specific immunoprofile. For that reason, exclusion of other dedifferentiated tumor entities by immunohistochemistry is still mandatory to avoid misdiagnosis. METHODS: We determined the expression frequency of several melanocytic and myofibroblastic markers investigating 50 AFXs and PDSs.. Next-generation-sequencing (NGS) was performed in microphthalmia-associated transcription factor (MiTF)-expressing cases. RESULTS: We identified one MiTF-expressing AFX and PDS, and two PDSs harboring single S100-positive dendritic cells whereas Melan A, HMB45, and SOX10 were negative. Calponin was moderately expressed by tumor giant cells in one PDS whereas h-caldesmon, desmin, and myogenin were not expressed in any of the AFXs or PDSs. The MiTF-positive AFX presented CDKN2A, OXA1L, and PDGFRA mutations whereas the PDS harbored a typical TP53 mutation. Both patients have not shown any tumor progression over the last 16 and 30 months. CONCLUSION: Rarely, AFX and PDS express the melanocytic marker MiTF and/or the myofibroblastic marker calponin. In doubtful cases, using a panel of immunohistochemical markers helps to avoid misdiagnosis.


Assuntos
Biomarcadores Tumorais , Mutação , Proteínas de Neoplasias , Sarcoma , Neoplasias Cutâneas , Raios Ultravioleta/efeitos adversos , Xantomatose , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma/patologia , Neoplasias Cutâneas/patologia , Xantomatose/genética , Xantomatose/metabolismo , Xantomatose/patologia
20.
Pathol Int ; 68(1): 36-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29127687

RESUMO

Here, cases of a 68- (Case 1) and a 44-year-old (Case 2) female are presented. They had an abnormality in the breast, and came to our hospital for further examination and treatment. Radiologically, malignancy could not completely excluded so breast excision was performed. Histologically, both cases revealed papillary neoplastic lesions lined by fibrovascular core and nuclear inverse polarity without atypia. Loss of myoepithelial cells was observed by HE, p63, and calponin. Previous report indicate CK5/6, ER, p63 and MUC3 are important for distinguishing between papillary lesions according to the differential index (based on Allred score) of ([ER total score] + [MUC3 total score])/([CK5/6 total score] + [p63 total score] + 1). Based on this analysis, our two cases had benign lesions. However, based on immunopositivity for cell-cycle marker Cyclin-D1, Case 1 was negative, and Case 2 was about 70% positive. Additionally, the Ki-67 index was <1% in both cases, and no evidence of disease was observed after a maximum 62 months of follow-up in both cases, despite lack of additional treatment. Thus, we propose that lack of myoepithelial cells in papillary lesions do not necessarily indicate malignancy and are thought to be, at the most, uncertain malignant potential.


Assuntos
Neoplasias da Mama/patologia , Papiloma/patologia , Adulto , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA