Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2218040120, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216512

RESUMO

Electrochemical CO2 reduction provides a potential means for synthesizing value-added chemicals over the near equilibrium potential regime, i.e., formate production on Pd-based catalysts. However, the activity of Pd catalysts has been largely plagued by the potential-depended deactivation pathways (e.g., [Formula: see text]-PdH to [Formula: see text]-PdH phase transition, CO poisoning), limiting the formate production to a narrow potential window of 0 V to -0.25 V vs. reversible hydrogen electrode (RHE). Herein, we discovered that the Pd surface capped with polyvinylpyrrolidone (PVP) ligand exhibits effective resistance to the potential-depended deactivations and can catalyze formate production at a much extended potential window (beyond -0.7 V vs. RHE) with significantly improved activity (~14-times enhancement at -0.4 V vs. RHE) compared to that of the pristine Pd surface. Combined results from physical and electrochemical characterizations, kinetic analysis, and first-principle simulations suggest that the PVP capping ligand can effectively stabilize the high-valence-state Pd species (Pdδ+) resulted from the catalyst synthesis and pretreatments, and these Pdδ+ species are responsible for the inhibited phase transition from [Formula: see text]-PdH to [Formula: see text]-PdH, and the suppression of CO and H2 formation. The present study confers a desired catalyst design principle, introducing positive charges into Pd-based electrocatalyst to enable efficient and stable CO2 to formate conversion.

2.
Angew Chem Int Ed Engl ; 57(17): 4652-4656, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29479792

RESUMO

We present a novel ligand, 5-norbornene-2-nonanoic acid, which can be directly added during established quantum dot (QD) syntheses in organic solvents to generate "clickable" QDs at a few hundred nmol scale. This ligand has a carboxyl group at one terminus to bind to the surface of QDs and a norbornene group at the opposite end that enables straightforward phase transfer of QDs into aqueous solutions via efficient norbornene/tetrazine click chemistry. Our ligand system removes the traditional ligand-exchange step and can produce water-soluble QDs with a high quantum yield and a small hydrodynamic diameter of approximately 12 nm at an order of magnitude higher scale than previous methods. We demonstrate the effectiveness of our approach by incubating azido-functionalized CdSe/CdS QDs with 4T1 cancer cells that are metabolically labeled with a dibenzocyclooctyne-bearing unnatural sugar. The QDs exhibit high targeting efficiency and minimal nonspecific binding.

3.
Tetrahedron Lett ; 55(36): 5078-5081, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25152545

RESUMO

In the course of development of novel capping ligands with variable steric factor, which will be used as an organic coating for metal oxide nanoparticles, a base-catalyzed nucleophilic oxirane ring-opening addition reaction between dimethyl 5-hydroxyisophthalate and allyl glycidyl ether was studied. The allyl-terminated 1-1, 1-2 and 1-3 adducts and dihydroxylated derivative of the 1-1 adduct, 5-diglyceroxy isophthalic acid, were synthesized. The latter binds to the surface of 5 nm γ-Fe2O3 nanoparticles in reaction with their surfactant-free diethylene glycol colloids.

4.
ACS Nano ; 18(33): 21894-21910, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110153

RESUMO

Inorganic colloidal cesium lead halide perovskite nanocrystals (NCs) encapsulated by surface capping ligands exhibit tremendous potential in optoelectronic applications, with their surface structure playing a pivotal role in enhancing their photophysical properties. Soy lecithin, a tightly binding zwitterionic surface-capping ligand, has recently facilitated the high-yield synthesis of stable ultraconcentrated and ultradilute colloids of CsPbX3 NCs, unlocking a myriad of potential device applications. However, the atomic-level understanding of the ligand-terminated surface structure remains uncertain. Herein, we use a versatile solid-state nuclear magnetic resonance (NMR) spectroscopic approach, in combination with dynamic nuclear polarization (DNP) and atomistic molecular dynamics (MD) simulations, to explore the effect of lecithin on the core-to-surface structures of CsPbX3 (X = Cl or Br) perovskites, sized from micron to nanoscale. Surface-selective (cross-polarization, CP) solid-state and DNP NMR (133Cs and 207Pb) methods were used to differentiate the unique surface and core chemical environments, while the head-groups {trimethylammonium [-N(CH3)3+] and phosphate (-PO4-)} of lecithin were assigned via 1H, 13C, and 31P NMR spectroscopy. A direct approach to determining the surface structure by capitalizing on the unique heteronuclear dipolar couplings between the lecithin ligand (1H and 31P) and the surface of the CsPbCl3 NCs (133Cs and 207Pb) is demonstrated. The 1H-133Cs heteronuclear correlation (HETCOR) DNP NMR indicates an abundance of Cs on the NC surface and an intimate proximity of the -N(CH3)3+ groups to the surface and subsurface 133Cs atoms, supported by 1H{133Cs} rotational-echo double-resonance (REDOR) NMR spectroscopy. Moreover, the 1H-31P{207Pb} CP REDOR dephasing curve provides average internuclear distance information that allows assessment of -PO4- groups binding to the subsurface Pb atoms. Atomistic MD simulations of ligand-capped CsPbCl3 surfaces aid in the interpretation of this information and suggest that ligand -N(CH3)3+ and -PO4- head-groups substitute Cs+ and Cl- ions, respectively, at the CsCl-terminated surface of the NCs. These detailed atomistic insights into surface structures can further guide the engineering of various relevant surface-capping zwitterionic ligands for diverse metal halide perovskite NCs.

5.
J Colloid Interface Sci ; 642: 771-778, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37037081

RESUMO

The functionalization of semiconductor nanocrystals, quantum dots (QDs), with small organic molecules has been studied extensively to gain better knowledge on how to tune the electronic, optical and chiroptical properties of QDs. Chiral QDs have progressively emerged as key materials in a vast range of applications including biosensing and biorecognition, imaging, asymmetric catalysis, optoelectronic devices, and spintronics. To engage the full potential of the unique properties of chiral nanomaterials and be able to prepare them with tailorable chiroptical characteristics, it is essential to understand how chirality is rendered from chiral molecular ligands at the surface of nanocrystals to the electronic states of QDs. Using a series of polar protic and aprotic solvents together with ammonium (NH4+), tetramethylammonium (TMA+), and tetrabutylammonium (TBA+) countercations in the preparation of threonine-functionalized cadmium sulfide (Thr-CdS) QDs by phase transfer ligand exchange approach, we demonstrated the significance of the role both the solvent and the countercations play in the transfer of chirality from chiral molecular ligand to achiral semiconductor QDs as apparent by the modulations of the signatures and anisotropy of the circular dichroism (CD) spectra. Moreover, we have utilized tetrabutylammonium countercation to successfully synthesize chiral QDs in nonpolar cyclohexane solvent for the first time. This study provides further insights into the origin of the ligand induced chirality of colloidal nanomaterials and facilitates the synthesis of tailormade chiral QDs.

6.
ACS Appl Mater Interfaces ; 11(7): 6927-6936, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30675780

RESUMO

The balance between band structure, composition, and defect is essential for improving the optoelectronic properties of ternary and quaternary quantum dots and the corresponding photovoltaic performance. In this work, ascorbic acid (AA) as capping ligand is introduced into the reaction system to prepare green Zn-Cu-In-Se (ZCISe) quantum dots. Results show that the addition of AA can increase the Zn content while decrease the In content, resulting in enlarged band gap, high conduction band energy level, and suppressed charge recombination. When AA/Cu ratio is 1, the quantum dots possess the largest band gap of 1.49 eV and the assembled quantum dot-sensitized solar cells exhibit superior photovoltaic performance with ∼17% increment mainly contributed by the dramatically increased current density. The new record efficiencies of 10.44 and 13.85% are obtained from the ZCISe cells assembled with brass and titanium mesh-based counter electrodes, respectively.

7.
Biosens Bioelectron ; 127: 135-141, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30597431

RESUMO

Quaternary chalcopyrite, i.e., Cu2ZnSnS4 (CZTS) nanoparticles films have been proposed as a novel matrix system for enzyme-based electrochemical biosensors providing a non-toxic, low-cost alternative for the fabrication of bioelectrodes. The easy tuneability of the band gap of CZTS by varying the cation ratio and size of nanoparticles facilitate to impart desirable electrical properties in the material. Butylamine capped spherical CZTS nanoparticles of size 15-16 nm and band gap 2.65 eV have been synthesized by colloidal hot injection technique. The films of CZTS onto ITO substrates are deposited using dip coating technique, and uricase enzyme have been immobilized onto CZTS films using EDC-NHS binding chemistry. Electrochemical analyses of this bioelectrode revealed that the uricase/CZTS/ITO/glass electrode exhibits good linearity over a wide range of 0-700 µM uric acid concentration with a limit of detection (LOD) of 0.066 µM. The low value of 0.13 × 10-4 M of Michaelis-Menten constant (Km) indicate the enhanced affinity of immobilized enzyme (uricase) towards uric acid. Thus, the present report confirms the promising application of the p-type CZTS thin film matrix for the realization of an electrochemical biosensor.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ácido Úrico/isolamento & purificação , Butilaminas/química , Cádmio/química , Enzimas Imobilizadas/química , Nanopartículas/química , Telúrio/química , Urato Oxidase/química , Ácido Úrico/química , Zinco/química
8.
ACS Appl Mater Interfaces ; 8(21): 13532-41, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27158733

RESUMO

A new possibility for the formation of macroscopic and photoactive structures from zinc oxide nanocrystals is described. Photoactive freely suspended and free-standing films of macroscopic area (up to few square millimeters) and submicrometer thickness (up to several hundreds of nanometers) composed of carboxylate ligand-coated zinc oxide nanocrystallites (RCO2-ZnO NCs) of diameter less than 5 nm are prepared according to a modified Langmuir-Schaefer method. First, the suspension of RCO2-ZnO NCs is applied onto the air/water interface. Upon compression, the films become turbid and elastic. The integrity of such structures is ensured by interdigitation of ligands stabilizing ZnO NCs. Great elasticity allows transfer of the films onto a metal frame as a freely suspended film. Such membranes are afterward extracted from the supporting frame to form free-standing films of macroscopic area. Because the integrity of the films is maintained by ligands, no abolishment of quantum confinement occurs, and films retain spectroscopic properties of initial RCO2-ZnO NCs. The mechanism of formation of thin films of RCO2-ZnO NCs at the air/water interface is discussed in detail.

9.
Sci Adv ; 2(11): e1601609, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28138537

RESUMO

Fathoming the principles underpinning the structures of monolayer-coated molecular metal nanoparticles remains an enduring challenge. Notwithstanding recent x-ray determinations, coveted veritable de novo structural predictions are scarce. Building on recent syntheses and de novo structure predictions of M3Au x Ag17-x (TBBT)12, where M is a countercation, x = 0 or 1, and TBBT is 4-tert-butylbenzenethiol, we report an x-ray-determined structure that authenticates an a priori prediction and, in conjunction with first-principles theoretical analysis, lends force to the underlying forecasting methodology. The predicted and verified Ag(SR)3 monomer, together with the recently discovered Ag2(SR)5 dimer and Ag3(SR)6 trimer, establishes a family of unique mount motifs for silver thiolate nanoparticles, expanding knowledge beyond the earlier-known Au-S staples in thiol-capped gold nanoclusters. These findings demonstrate key principles underlying ligand-shell anchoring to the metal core, as well as unique T-like benzene dimer and cyclic benzene trimer ligand bundling configurations, opening vistas for rational design of metal and alloy nanoparticles.

10.
Int J Nanomedicine ; 8: 1507-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23620666

RESUMO

The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs' surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.


Assuntos
Química Verde/métodos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Pulicaria/química , Prata/química , Microscopia Eletrônica de Transmissão , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Pulicaria/metabolismo , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA