Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Vet Res ; 54(1): 79, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723537

RESUMO

CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.


Assuntos
Doenças dos Bovinos , Infecções Estafilocócicas , Feminino , Animais , Bovinos , Staphylococcus aureus/genética , Proteínas de Membrana , Parede Celular , Genótipo , Infecções Estafilocócicas/veterinária , Imunoglobulina G
2.
J Biol Chem ; 295(49): 16700-16712, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978256

RESUMO

Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.


Assuntos
Aderência Bacteriana/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Ligantes , Staphylococcus aureus Resistente à Meticilina/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Elementos de DNA Transponíveis/genética , Ensaio de Imunoadsorção Enzimática , Fibrinogênio/química , Fibrinogênio/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Biblioteca Gênica , Loci Gênicos , Humanos , Queratinas/química , Queratinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética
3.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947645

RESUMO

Staphylococcus aureus has become increasingly resistant to antibiotics, and vaccines offer a potential solution to this epidemic of antimicrobial resistance. Targeting of specific T cell subsets is now considered crucial for next-generation anti-S. aureus vaccines; however, there is a paucity of information regarding T cell antigens of S. aureus This study highlights the importance of cell wall-anchored proteins as human CD4+ T cell activators capable of driving antigen-specific Th1 and Th17 cell activation. Clumping factor A (ClfA), which contains N1, N2, and N3 binding domains, was found to be a potent human T cell activator. We further investigated which subdomains of ClfA were involved in T cell activation and found that the full-length ClfA N123 and N23 were potent Th1 and Th17 activators. Interestingly, the N1 subdomain was capable of exclusively activating Th1 cells. Furthermore, when these subdomains were used in a model vaccine, N23 and N1 offered Th1- and Th17-mediated systemic protection in mice upon intraperitoneal challenge. Overall, however, full-length ClfA N123 is required for maximal protection both locally and systemically.


Assuntos
Antígenos de Bactérias/imunologia , Coagulase/imunologia , Staphylococcus aureus/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/imunologia , Análise de Sobrevida
4.
Proc Natl Acad Sci U S A ; 111(10): 3835-40, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567409

RESUMO

The formation of dental plaque, a highly complex biofilm that causes gingivitis and periodontitis, requires specific adherence among many oral microbes, including the coaggregation of Actinomyces oris with Streptococcus oralis that helps to seed biofilm development. Here, we report the discovery of a key coaggregation factor for this process. This protein, which we named coaggregation factor A (CafA), is one of 14 cell surface proteins with the LPXTG motif predicted in A. oris MG1, whose function was hitherto unknown. By systematic mutagenesis of each of these genes and phenotypic characterization, we found that the Actinomyces/Streptococcus coaggregation is only abolished by deletion of cafA. Subsequent biochemical and cytological experiments revealed that CafA constitutes the tip of a unique form of the type 2 fimbria long known for its role in coaggregation. The direct and predominant role of CafA in adherence is evident from the fact that CafA or an antibody against CafA inhibits coaggregation, whereas the shaft protein FimA or a polyclonal antibody against FimA has no effect. Remarkably, FimA polymerization was blocked by deletion of genes for both CafA and FimB, the previously described tip protein of the type 2 fimbria. Together, these results indicate that some surface proteins not linked to a pilus gene cluster in Gram-positive bacteria may hijack the pilus. These unique tip proteins displayed on a common pilus shaft may serve distinct physiological functions. Furthermore, the pilus shaft assembly in Gram-positive bacteria may require a tip, as is true for certain Gram-negative bacterial pili.


Assuntos
Actinomyces/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Placa Dentária/microbiologia , Fímbrias Bacterianas/fisiologia , Proteínas de Membrana/metabolismo , Streptococcus oralis/metabolismo , Actinomyces/crescimento & desenvolvimento , Motivos de Aminoácidos/genética , Proteínas de Bactérias/genética , Western Blotting , Fracionamento Celular , Escherichia coli , Humanos , Proteínas de Membrana/genética , Microscopia Imunoeletrônica , Família Multigênica/genética , Mutagênese , Streptococcus oralis/crescimento & desenvolvimento
5.
Microbiol Res ; 285: 127782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833832

RESUMO

As a major human and animal pathogen, Staphylococcus aureus can attach to medical implants (abiotic surface) or host tissues (biotic surface), and further establish robust biofilms which enhances resistance and persistence to host immune system and antibiotics. Cell-wall-anchored proteins (CWAPs) covalently link to peptidoglycan, and largely facilitate the colonization of S. aureus on various surfaces (including adhesion and biofilm formation) and invasion into host cells (including adhesion, immune evasion, iron acquisition and biofilm formation). During biofilm formation, CWAPs function in adhesion, aggregation, collagen-like fiber network formation, and consortia formation. In this review, we firstly focus on the structural features of CWAPs, including their intracellular function and interactions with host cells, as well as the functions and ligand binding of CWAPs in different stages of S. aureus biofilm formation. Then, the roles of CWAPs in different biofilm processes with regards in development of therapeutic approaches are clarified, followed by the association between CWAPs genes and clonal lineages. By touching upon these aspects, we hope to provide comprehensive knowledge and clearer understanding on the CWAPs of S. aureus and their roles in biofilm formation, which may further aid in prevention and treatment infection and vaccine development.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias , Biofilmes , Parede Celular , Infecções Estafilocócicas , Staphylococcus aureus , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Staphylococcus aureus/genética , Humanos , Infecções Estafilocócicas/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Animais , Peptidoglicano/metabolismo
6.
Front Microbiol ; 12: 691087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394031

RESUMO

Coagulase-negative Staphylococcus warneri is an opportunistic pathogen that is capable of causing several infections, especially in patients with indwelling medical devices. Here, we determined the complete genome sequence of a clinical S. warneri strain isolated from the blood culture of a 1-year-old nursling patient with acute upper respiratory infection. Genome-wide phylogenetic analysis confirmed the phylogenetic relationships between S. warneri and other Staphylococcus species. Using comparative genomics, we identified three cell wall-anchored (CWA) proteins at the same locus (sdr), named SdrJ, SdrK, and SdrL, on the chromosome sequences of different S. warneri strains. Structural predictions showed that SdrJ/K/L have structural features characteristic of Sdr proteins but exceptionally contained an unusual N-terminal repeat region. However, the C-terminal repetitive (R) region of SdrJ contains a significantly larger proportion of alanine (142/338, 42.01%) than the previously reported SdrI (37.00%). Investigation of the genetic organization revealed that the sdrJ/K/L genes were always followed by one or two glycosyltransferase genes, gtfA and gtfB and were present in an ∼56 kb region bordered by a pair of 8 bp identical direct repeats, named Sw-Sdr. This region was further found to be located on a 160-kb region subtended by a pair of 160-bp direct repeats along with other virulence genes and resistance genes. Sw-Sdr contained a putative integrase that was probably a remnant of a functional integrase. Evidence suggests that Sw-Sdr is improbably an efficient pathogenicity island. A large-scale investigation of Staphylococcus genomes showed that sdr loci were a potential hotspot of insertion sequences (ISs), which could lead to intraspecific diversity at these loci. Our work expanded the repository of Staphylococcus Sdr proteins, and for the first time, we established the connection between sdr loci and phylogenetic relationships and compared the sdr loci in different Staphylococcus species, which provided large insights into the genetic environment of CWA genes in Staphylococcus.

7.
mBio ; 11(1)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071265

RESUMO

Staphylococcus epidermidis is a leading cause of nosocomial infections in patients with a compromised immune system and/or an implanted medical device. Seventy to 90% of S. epidermidis clinical isolates are methicillin resistant and carry the mecA gene, present in a mobile genetic element (MGE) called the staphylococcal cassette chromosome mec (SCCmec) element. Along with the presence of antibiotic and heavy metal resistance genes, MGEs can also contain genes encoding secreted or cell wall-anchored virulence factors. In our earlier studies of S. epidermidis clinical isolates, we discovered S. epidermidis surface protein J (SesJ), a prototype of a recently discovered subfamily of the microbial surface component recognizing adhesive matrix molecule (MSCRAMM) group. MSCRAMMs are major virulence factors of pathogenic Gram-positive bacteria. Here, we report that the sesJ gene is always accompanied by two glycosyltransferase genes, gtfA and gtfB, and is present in two MGEs, called the arginine catabolic mobile element (ACME) and the staphylococcal cassette chromosome (SCC) element. The presence of the sesJ gene was associated with the left-hand direct repeat DR_B or DR_E. When inserted via DR_E, the sesJ gene was encoded in the SCC element. When inserted via DR_B, the sesJ gene was accompanied by the genes for the type 1 restriction modification system and was encoded in the ACME. Additionally, the SCC element and ACME carry different isoforms of the SesJ protein. To date, the genes encoding MSCRAMMs have been seen to be located in the bacterial core genome. Here, we report the presence of an MSCRAMM in an MGE in S. epidermidis clinical isolates.IMPORTANCES. epidermidis is an opportunistic bacterium that has established itself as a successful nosocomial pathogen. The modern era of novel therapeutics and medical devices has extended the longevity of human life, but at the same time, we also witness the evolution of pathogens to adapt to newly available niches in the host. Increasing antibiotic resistance among pathogens provides an example of such pathogen adaptation. With limited opportunities to modify the core genome, most of the adaptation occurs by acquiring new genes, such as virulence factors and antibiotic resistance determinants present in MGEs. In this study, we describe that the sesJ gene, encoding a recently discovered cell wall-anchored protein in S. epidermidis, is present in both ACME and the SCC element. The presence of virulence factors in MGEs can influence the virulence potential of a specific strain. Therefore, it is critical to study the virulence factors found in MGEs in emerging pathogenic bacteria or strains to understand the mechanisms used by these bacteria to cause infections.


Assuntos
Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Ilhas Genômicas/genética , Proteínas de Membrana/genética , Staphylococcus epidermidis/genética , Antibacterianos/farmacologia , Arginina/metabolismo , Genes Bacterianos/genética , Glicosiltransferases/genética , Humanos , Resistência a Meticilina/efeitos dos fármacos , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Prevalência , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Virulência , Fatores de Virulência/genética
8.
Front Immunol ; 9: 602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686667

RESUMO

Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of "old" and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention.


Assuntos
Proteínas de Bactérias/imunologia , Parede Celular/imunologia , Proteínas de Membrana/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Animais , Biomarcadores , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Matriz Extracelular , Fímbrias Bacterianas/imunologia , Humanos , Imunomodulação , Integrinas/metabolismo , Antígenos O/imunologia , Infecções Estreptocócicas/metabolismo
9.
Pathogens ; 5(1)2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26901227

RESUMO

Staphylococcus aureus (S. aureus) causes the vast majority of skin and soft tissue infections (SSTIs) in humans. S. aureus has become increasingly resistant to antibiotics and there is an urgent need for new strategies to tackle S. aureus infections. Vaccines offer a potential solution to this epidemic of antimicrobial resistance. However, the development of next generation efficacious anti-S. aureus vaccines necessitates a greater understanding of the protective immune response against S. aureus infection. In particular, it will be important to ascertain if distinct immune mechanisms are required to confer protection at distinct anatomical sites. Recent discoveries have highlighted that interleukin-17-producing T cells play a particularly important role in the immune response to S. aureus skin infection and suggest that vaccine strategies to specifically target these types of T cells may be beneficial in the treatment of S. aureus SSTIs. S. aureus expresses a large number of cell wall-anchored (CWA) proteins, which are covalently attached to the cell wall peptidoglycan. The virulence potential of many CWA proteins has been demonstrated in infection models; however, there is a paucity of information regarding their roles during SSTIs. In this review, we highlight potential candidate antigens for vaccines targeted at protection against SSTIs.

10.
Front Microbiol ; 7: 540, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199900

RESUMO

Coagulase negative staphylococci (CoNS) are important opportunistic pathogens. Staphylococcus epidermidis, a coagulase negative staphylococcus, is the third leading cause of nosocomial infections in the US. Surface proteins like Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are major virulence factors of pathogenic gram positive bacteria. Here, we identified a new chimeric protein in S. epidermidis, that we call SesJ. SesJ represents a prototype of a new subfamily of MSCRAMMs. Structural predictions show that SesJ has structural features characteristic of a MSCRAMM along with a N-terminal repeat region and an aspartic acid containing C-terminal repeat region, features that have not been previously observed in staphylococcal MSCRAMMs but have been found in other surface proteins from gram positive bacteria. We identified and analyzed structural homologs of SesJ in three other CoNS. These homologs of SesJ have an identical structural organization but varying sequence identities within the domains. Using flow cytometry, we also show that SesJ is expressed constitutively on the surface of a representative S. epidermidis strain, from early exponential to stationary growth phase. Thus, SesJ is positioned to interact with protein targets in the environment and plays a role in S. epidermidis virulence.

11.
Mol Oral Microbiol ; 30(5): 376-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25891147

RESUMO

Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation.


Assuntos
Proteína Estafilocócica A/metabolismo , Streptococcus mutans/citologia , Streptococcus mutans/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Luminescentes/genética , Imagem Óptica , Proteína Estafilocócica A/genética , Streptococcus mutans/fisiologia , Proteína Vermelha Fluorescente
12.
Artigo em Inglês | MEDLINE | ID: mdl-25540773

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are the most important etiological agents of biofilm associated-infections on indwelling medical devices. Biofilm infections may also develop independently of indwelling devices, e.g., in native valve endocarditis, bone tissue, and open wounds. After attachment to tissue or indwelling medical devices that have been conditioned with host plasma proteins, staphylococcal biofilms grow, and produce a specific environment which provides the conditions for cell-cell interaction and formation of multicellular communities. Bacteria living in biofilms express a variety of macromolecules, including exopolysaccharides, proteins, extracellular eDNA, and other polymers. The S. aureus surface protein C and G (SasC and SasG), clumping factor B (ClfB), serine aspartate repeat protein (SdrC), the biofilm-associated protein (Bap), and the fibronectin/fibrinogen-binding proteins (FnBPA and FnBPB) are individually implicated in biofilm matrix formation. In S. epidermidis, a protein named accumulation-associated protein (Aap) contributes to both the primary attachment phase and the establishment of intercellular connections by forming fibrils on the cell surface. In S. epidermidis, proteinaceous biofilm formation can also be mediated by the extracellular matrix binding protein (Embp) and S. epidermidis surface protein C (SesC). Additionally, multifunctional proteins such as extracellular adherence protein (Eap) and extracellular matrix protein binding protein (Emp) of S. aureus and the iron-regulated surface determinant protein C (IsdC) of S. lugdunensis can promote biofilm formation in iron-depleted conditions. This multitude of proteins intervene at different stages of biofilm formation with certain proteins contributing to biofilm accumulation and others mediating primary attachment to surfaces. This review examines the contribution of proteins to biofilm formation in Staphylococci. The potential to develop vaccines to prevent protein-dependent biofilm formation during staphylococcal infection is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/fisiologia , Animais , Proteínas de Bactérias/genética , Humanos , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA