Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105514, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042490

RESUMO

Non-muscle myosin 2A (NM2A), a widely expressed class 2 myosin, is important for organizing actin filaments in cells. It cycles between a compact inactive 10S state in which its regulatory light chain (RLC) is dephosphorylated and a filamentous state in which the myosin heads interact with actin, and the RLC is phosphorylated. Over 170 missense mutations in MYH9, the gene that encodes the NM2A heavy chain, have been described. These cause MYH9 disease, an autosomal-dominant disorder that leads to bleeding disorders, kidney disease, cataracts, and deafness. Approximately two-thirds of these mutations occur in the coiled-coil tail. These mutations could destabilize the 10S state and/or disrupt filament formation or both. To test this, we determined the effects of six specific mutations using multiple approaches, including circular dichroism to detect changes in secondary structure, negative stain electron microscopy to analyze 10S and filament formation in vitro, and imaging of GFP-NM2A in fixed and live cells to determine filament assembly and dynamics. Two mutations in D1424 (D1424G and D1424N) and V1516M strongly decrease 10S stability and have limited effects on filament formation in vitro. In contrast, mutations in D1447 and E1841K, decrease 10S stability less strongly but increase filament lengths in vitro. The dynamic behavior of all mutants was altered in cells. Thus, the positions of mutated residues and their roles in filament formation and 10S stabilization are key to understanding their contributions to NM2A in disease.


Assuntos
Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA , Humanos , Citoesqueleto/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Estrutura Secundária de Proteína
2.
Chem Pharm Bull (Tokyo) ; 72(7): 658-663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987173

RESUMO

In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their conformational states is crucial to ensure the efficacy, quality, and safety of the drug products. It is important to assess the structural integrity of biomolecular therapeutics to guarantee their intended pharmacological activity and maintain the required standards for drug development and manufacturing. One widely utilized technique for quality evaluation is secondary structural analysis using circular dichroism (CD) spectroscopy. Given the higher production and quality control costs associated with medium-sized drugs compared with small-molecule drugs, developing analytical techniques that enable CD analysis with reduced sample volumes is highly desirable. Herein, we focused on a microsampling disk-type cell as a potential solution for reducing the required sample volume. We investigated whether CD spectral analysis using a microsampling disk could provide equivalent spectra compared with the standard cell (sample volume: approx. 300 µL). Our findings demonstrated that the microsampling disk (sample volume: 2-10 µL) could be successfully applied to CD spectral analysis of peptide and nucleic acid drugs, paving the way for more efficient and cost-effective quality evaluation processes.


Assuntos
Dicroísmo Circular , Ácidos Nucleicos , Peptídeos , Peptídeos/química , Peptídeos/análise , Ácidos Nucleicos/análise , Ácidos Nucleicos/química
3.
J Biol Chem ; 298(5): 101843, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307351

RESUMO

The B-cell receptor (BCR), a complex comprised of a membrane-associated immunoglobulin and the Igα/ß heterodimer, is one of the most important immune receptors in humans and controls B-cell development, activity, selection, and death. BCR signaling plays key roles in autoimmune diseases and lymphoproliferative disorders, yet, despite the clinical significance of this protein complex, key regions (i.e., the transmembrane domains) have yet to be structurally characterized. The mechanism for BCR signaling also remains unclear and has been variously described by the mutually exclusive cross-linking and dissociation activation models. Common to these models is the significance of local plasma membrane composition, which implies that interactions between BCR transmembrane domains (TMDs) play a role in receptor functionality. Here we used an in vivo assay of TMD oligomerization called GALLEX alongside spectroscopic and computational methods to characterize the structures and interactions of human Igα and Igß TMDs in detergent micelles and natural membranes. We observed weak self-association of the Igß TMD and strong self-association of the Igα TMD, which scanning mutagenesis revealed was entirely stabilized by an E-X10-P motif. We also demonstrated strong heterotypic interactions between the Igα and Igß TMDs both in vitro and in vivo, which scanning mutagenesis and computational models suggest is multiconfigurational but can accommodate distinct interaction sites for self-interactions and heterotypic interactions of the Igα TMD. Taken together, these results demonstrate that the TMDs of the human BCR are sites of strong protein-protein interactions that may direct BCR assembly, endoplasmic reticulum retention, and immune signaling.


Assuntos
Receptores de Antígenos de Linfócitos B , Membrana Celular/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Domínios Proteicos , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
4.
Chirality ; 35(7): 427-434, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36843151

RESUMO

Ganirelix, a drug used in in vitro fertilization (IVF), prevents ovulation in women who are not ready to have children by inhibiting a gene that produces gonadotropin. Peptides are macromolecules that are able to preserve a predetermined shape while carrying out the structural and regulatory roles for which they were originally intended. Peptide structures can be altered in the production and storage processes. Therapeutic peptides' biological activity can be drastically altered by even small modifications in their primary and secondary structures. The molecules' secondary structures can be monitored by subjecting them to different processing or storage conditions. In our investigation, we used circular dichroism (CD) spectroscopy with two different software programs for secondary structure evaluation to look at how environmental factors like temperature and humidity affected the secondary structure of Ganirelix in an injectable formulation. The CD results revealed that the alpha-helical (regular and distorted), beta-sheet, beta-strands (regular and distorted), beta-turn, and random coil structures of temperature and humidity stressed generic drug products are comparable to reference-listed drug.


Assuntos
Hormônio Liberador de Gonadotropina , Criança , Feminino , Humanos , Temperatura , Dicroísmo Circular , Umidade , Estereoisomerismo , Hormônio Liberador de Gonadotropina/uso terapêutico
5.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203338

RESUMO

Medicinal chemistry is constantly searching for new approaches to develop more effective and targeted therapeutic molecules. The design of peptidomimetics is a promising emerging strategy that is aimed at developing peptides that mimic or modulate the biological activity of proteins. Among these, stapled peptides stand out for their unique ability to stabilize highly frequent helical motifs, but they have failed to be systematically reported. Here, we exploit chemically diverse helix-inducing i, i + 4 constraints-lactam, hydrocarbon, triazole, double triazole and thioether-on two distinct short sequences derived from the N-terminal peptidase domain of hACE2 upon structural characterization and in silico alanine scan. Our overall objective was to provide a sequence-independent comparison of α-helix-inducing staples using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. We identified a 9-mer lactam stapled peptide derived from the hACE2 sequence (His34-Gln42) capable of reaching its maximal helicity of 55% with antiviral activity in bioreporter- and pseudovirus-based inhibition assays. To the best of our knowledge, this study is the first comprehensive investigation comparing several cyclization methods with the goal of generating stapled peptides and correlating their secondary structures with PPI inhibitions using a highly topical model system (i.e., the interaction of SARS-CoV-2 Spike RBD with hACE2).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ciclização , Lactamas , Peptídeos/farmacologia , Triazóis
6.
Chemistry ; 28(65): e202202069, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35951443

RESUMO

Multiple heterohelicenes are a unique class of helical nonplanar scaffolds that have attracted great attention due to their appealing shapes, optical and electronic properties, and potential applications in chiral materials. This review describes the recent advances and challenges in the design and synthesis of representative multiple heterohelicenes with intriguing chiral properties. And the corresponding applications are also covered.

7.
Mol Pharm ; 19(7): 2022-2031, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35715255

RESUMO

Preservation of the integrity of macromolecular higher-order structure is a tenet central to achieving biologic drug and vaccine product stability toward manufacturing, distribution, storage, handling, and administration. Given that mRNA lipid nanoparticles (mRNA-LNPs) are held together by an intricate ensemble of weak forces, there are some intriguing parallels to biologic drugs, at least at first glance. However, mRNA vaccines are not without unique formulation and stabilization challenges derived from the instability of unmodified mRNA and its limited history as a drug or vaccine. Since certain learning gained from biologic drug development may be applicable for the improvement of mRNA vaccines, we present a perspective on parallels and contrasts between the emerging role of higher-order structure pertaining to mRNA-LNPs compared to pharmaceutical proteins. In a recent publication, the location of mRNA encapsulated within lipid nanoparticles was identified, revealing new insights into the LNP structure, nanoheterogeneity, and microenvironment of the encapsulated mRNA molecules [Brader et al. Biophys. J. 2021, 120, 2766]. We extend those findings by considering the effect of encapsulation on mRNA thermal unfolding with the observation that encapsulation in LNPs increases mRNA unfolding temperatures.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Lipossomos , Nanopartículas/química , RNA Mensageiro , Vacinas Sintéticas/genética , Vacinas de mRNA
8.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164209

RESUMO

Protein aggregation and amyloidogenesis have been associated with several neurodegenerative disorders like Alzheimer's, Parkinson's etc. Unfortunately, there are still no proper drugs and no effective treatment available. Due to the unique properties of noble metallic nanoparticles, they have been used in diverse fields of biomedicine like drug designing, drug delivery, tumour targeting, bio-sensing, tissue engineering etc. Small-sized silver nanoparticles have been reported to have anti-biotic, anti-cancer and anti-viral activities apart from their cytotoxic effects. The current study was carried out in a carefully designed in-vitro to observe the anti-amyloidogenic and inhibitory effects of biologically synthesized green silver nanoparticles (B-AgNPs) on human serum albumin (HSA) aggregation taken as a model protein. We have used different biophysical assays like thioflavin T (ThT), 8-Anilino-1-naphthalene-sulphonic acid (ANS), Far-UV CD etc. to analyze protein aggregation and aggregation inhibition in vitro. It has been observed that the synthesized fluorescent B-AgNPs showed inhibitory effects on protein aggregation in a concentration-dependent manner reaching a plateau, after which the effect of aggregation inhibition was significantly declined. We also observed meaningful chaperone-like aggregation-inhibition activities of as-synthesized florescent B-AgNPs in astrocytes.


Assuntos
Chaperoninas/metabolismo , Desenvolvimento de Medicamentos , Química Verde , Prata/química , Nanopartículas Metálicas/química
9.
J Biol Chem ; 295(15): 4870-4880, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32127399

RESUMO

Oligomers of ß-amyloid 42 (Aß42), rather than fibrils, drive the pathogenesis of Alzheimer's disease (AD). In particular, toxic oligomeric species called protofibrils (PFs) have attracted significant attention. Herein, we report RNA aptamers with higher affinity toward PFs derived from a toxic Aß42 dimer than toward fibrils produced from WT Aß42 or from a toxic, conformationally constrained Aß42 variant, E22P-Aß42. We obtained these RNA aptamers by using the preincubated dimer model of E22P-Aß42, which dimerized via a linker located at Val-40, as the target of in vitro selection. This dimer formed PFs during incubation. Several physicochemical characteristics of an identified aptamer, E22P-AbD43, suggested that preferential affinity of this aptamer toward PFs is due to its higher affinity for the toxic dimer unit (KD = 20 ± 6.0 nm) of Aß42 than for less-toxic Aß40 aggregates. Comparison of CD data from the full-length and random regions of E22P-AbD43 suggested that the preferential binding of E22P-AbD43 toward the dimer might be related to the formation of a G-quadruplex structure. E22P-AbD43 significantly inhibited the nucleation phase of the dimer and its associated neurotoxicity in SH-SY5Y human neuroblastoma cells. Of note, E22P-AbD43 also significantly protected against the neurotoxicity of WT Aß42 and E22P-Aß42. Furthermore, in an AD mouse model, E22P-AbD43 preferentially recognized diffuse aggregates, which likely originated from PFs or higher-order oligomers with curvilinear structures, compared with senile plaques formed from fibrils. We conclude that the E22P-AbD43 aptamer is a promising research and diagnostic tool for further studies of AD etiology.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Modelos Animais de Doenças , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Humanos , Imuno-Histoquímica , Camundongos , Placa Amiloide/genética , Placa Amiloide/metabolismo
10.
J Biol Chem ; 295(14): 4411-4427, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32102851

RESUMO

The skin-colonizing commensal bacterium Staphylococcus epidermidis is a leading cause of hospital-acquired and device-related infections. Its pathogenicity in humans is largely due to its propensity to form biofilms, surface-adherent bacterial accumulations that are remarkably resistant to chemical and physical stresses. Accumulation-associated protein (Aap) from S. epidermidis has been shown to be necessary and sufficient for mature biofilm formation and catheter infection. Aap contains up to 17 tandem B-repeat domains, capable of zinc-dependent assembly into twisted, rope-like intercellular filaments in the biofilm. Using microscopic and biophysical techniques, we show here that Aap B-repeat constructs assemble further into zinc-dependent functional amyloid fibers. We observed such amyloid fibers by confocal microscopy during both early and late stages of S. epidermidis biofilm formation, and we confirmed that extracellular fibrils from these biofilms contain Aap. Unlike what has been observed for amyloidogenic biofilm proteins from other bacteria, which typically use chaperones or initiator proteins to initiate amyloid assembly, our findings indicate that Aap from S. epidermidis requires Zn2+ as a catalyst that drives amyloid fiber formation, similar to many mammalian amyloid-forming proteins that require metals for assembly. This work provides detailed insights into S. epidermidis biofilm formation and architecture that improve our understanding of persistent staphylococcal infections.


Assuntos
Amiloide/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Staphylococcus epidermidis/fisiologia , Zinco/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Quelantes/química , Microscopia Confocal , Ácido Pentético/farmacologia , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Temperatura , Zinco/química
11.
J Biol Chem ; 295(51): 17852-17864, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33454019

RESUMO

Aspergillus terreus is an allergenic fungus, in addition to causing infections in both humans and plants. However, the allergens in this fungus are still unknown, limiting the development of diagnostic and therapeutic strategies. We used a proteomic approach to search for allergens, identifying 16 allergens based on two-dimensional immunoblotting with A. terreus susceptible patient sera. We further characterized triose-phosphate isomerase (Asp t 36), one of the dominant IgE (IgE)-reactive proteins. The gene was cloned and expressed in Escherichia coli. Phylogenetic analysis showed Asp t 36 to be highly conserved with close similarity to the triose-phosphate isomerase protein sequence from Dermatophagoides farinae, an allergenic dust mite. We identified four immunodominant epitopes using synthetic peptides, and mapped them on a homology-based model of the tertiary structure of Asp t 36. Among these, two were found to create a continuous surface patch on the 3D structure, rendering it an IgE-binding hotspot. Biophysical analysis indicated that Asp t 36 shows similar secondary structure content and temperature sensitivity with other reported triose-phosphate isomerase allergens. In vivo studies using a murine model displayed that the recombinant Asp t 36 was able to stimulate airway inflammation, as demonstrated by an influx of eosinophils, goblet cell hyperplasia, elevated serum Igs, and induction of Th2 cytokines. Collectively, our results reveal the immunogenic property of Asp t 36, a major allergen from A. terreus, and define a new fungal allergen more broadly. This allergen could serve as a potent candidate for investigating component resolved diagnosis and immunotherapy.


Assuntos
Alérgenos/metabolismo , Aspergillus/metabolismo , Proteínas Fúngicas/metabolismo , Alérgenos/classificação , Alérgenos/genética , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Eletroforese em Gel Bidimensional , Epitopos/análise , Epitopos/química , Epitopos/imunologia , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Hipersensibilidade/veterinária , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Estrutura Terciária de Proteína , Proteoma/análise , Proteoma/imunologia , Pyroglyphidae/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/classificação
12.
J Biol Chem ; 295(5): 1181-1194, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31844019

RESUMO

Ninety-five percent of all transmembrane proteins exist in kinetically trapped aggregation-prone states that have been directly linked to neurodegenerative diseases. Interestingly, the primary sequence almost invariably avoids off-pathway aggregate formation, by folding reliably into its native, thermodynamically stabilized structure. However, with the rising incidence of protein aggregation diseases, it is now important to understand the underlying mechanism(s) of membrane protein aggregation. Micromolecular physicochemical and biochemical alterations in the primary sequence that trigger the formation of macromolecular cross-ß aggregates can be measured only through combinatorial spectroscopic experiments. Here, we developed spectroscopic thermal perturbation with 117 experimental variables to assess how subtle protein sequence variations drive the molecular transition of the folded protein to oligomeric aggregates. Using the Yersinia pestis outer transmembrane ß-barrel Ail as a model, we delineated how a single-residue substitution that alters the membrane-anchoring ability of Ail significantly contributes to the kinetic component of Ail stability. We additionally observed a stabilizing role for interface aliphatics, and that interface aromatics physicochemically contribute to Ail self-assembly and aggregation. Moreover, our method identified the formation of structured oligomeric intermediates during Ail aggregation. We show that the self-aggregation tendency of Ail is offset by the evolution of a thermodynamically compromised primary sequence that balances folding, stability, and oligomerization. Our approach provides critical information on how subtle changes in protein primary sequence trigger cross-ß fibril formation, with insights that have direct implications for deducing the molecular progression of neurodegeneration and amyloidogenesis in humans.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Desdobramento de Proteína , Fatores de Virulência/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Dicroísmo Circular , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Mutação , Agregados Proteicos , Conformação Proteica em Folha beta/genética , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína/genética , Termodinâmica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
J Biol Chem ; 295(43): 14653-14665, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32817169

RESUMO

Transmembrane ß-barrels of eukaryotic outer mitochondrial membranes (OMMs) are major channels of communication between the cytosol and mitochondria and are indispensable for cellular homeostasis. A structurally intriguing exception to all known transmembrane ß-barrels is the unique odd-stranded, i.e. 19-stranded, structures found solely in the OMM. The molecular origins of this 19-stranded structure and its associated functional significance are unclear. In humans, the most abundant OMM transporter is the voltage-dependent anion channel. Here, using the human voltage-dependent anion channel as our template scaffold, we designed and engineered odd- and even-stranded structures of smaller (V216, V217, V218) and larger (V220, V221) barrel diameters. Determination of the structure, dynamics, and energetics of these engineered structures in bilayer membranes reveals that the 19-stranded barrel surprisingly holds modest to low stability in a lipid-dependent manner. However, we demonstrate that this structurally metastable protein possesses superior voltage-gated channel regulation, efficient mitochondrial targeting, and in vivo cell survival, with lipid-modulated stability, all of which supersede the occurrence of a metastable 19-stranded scaffold. We propose that the unique structural adaptation of these transmembrane transporters exclusively in mitochondria bears strong evolutionary basis and is functionally significant for homeostasis.


Assuntos
Bicamadas Lipídicas/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Evolução Molecular , Humanos , Bicamadas Lipídicas/química , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Porinas/química , Porinas/genética , Porinas/metabolismo , Conformação Proteica em Folha beta , Engenharia de Proteínas , Estabilidade Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Canal de Ânion 2 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética
14.
J Biol Chem ; 295(35): 12437-12448, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651228

RESUMO

FimA is the main structural subunit of adhesive type 1 pili from uropathogenic Escherichia coli strains. Up to 3000 copies of FimA assemble to the helical pilus rod through a mechanism termed donor strand complementation, in which the incomplete immunoglobulin-like fold of each FimA subunit is complemented by the N-terminal extension (Nte) of the next subunit. The Nte of FimA, which exhibits a pseudo-palindromic sequence, is inserted in an antiparallel orientation relative to the last ß-strand of the preceding subunit in the pilus. The resulting subunit-subunit interactions are extraordinarily stable against dissociation and unfolding. Alternatively, FimA can fold to a self-complemented monomer with anti-apoptotic activity, in which the Nte inserts intramolecularly into the FimA core in the opposite, parallel orientation. The FimA monomers, however, show dramatically lower thermodynamic stability compared with FimA subunits in the assembled pilus. Using self-complemented FimA variants with reversed, pseudo-palindromic extensions, we demonstrate that the high stability of FimA polymers is primarily caused by the specific interactions between the side chains of the Nte residues and the FimA core and not by the antiparallel orientation of the donor strand alone. In addition, we demonstrate that nonequilibrium two-state folding, a hallmark of FimA with the Nte inserted in the pilus rod-like, antiparallel orientation, only depends on the identity of the inserted Nte side chains and not on Nte orientation.


Assuntos
Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Escherichia coli/química , Escherichia coli/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Domínios Proteicos
15.
Sensors (Basel) ; 21(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206760

RESUMO

Chiral materials, which show different optical behaviors when illuminated by left or right circularly polarized light due to broken mirror symmetry, have greatly impacted the field of optical sensing over the past decade. To improve the sensitivity of chiral sensing platforms, enhancing the chiroptical response is necessary. Metasurfaces, which are two-dimensional metamaterials consisting of periodic subwavelength artificial structures, have recently attracted significant attention because of their ability to enhance the chiroptical response by manipulating amplitude, phase, and polarization of electromagnetic fields. Here, we reviewed the fundamentals of chiroptical metasurfaces as well as categorized types of chiroptical metasurfaces by their intrinsic or extrinsic chirality. Finally, we introduced applications of chiral metasurfaces such as multiplexing metaholograms, metalenses, and sensors.

16.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669383

RESUMO

Recurrent protein folding motifs include various types of helical bundles formed by α-helices that supercoil around each other. While specific patterns of amino acid residues (heptad repeats) characterize the highly versatile folding motif of four-α-helical bundles, the significance of the polypeptide chain directionality is not sufficiently understood, although it determines sequence patterns, helical dipoles, and other parameters for the folding and oligomerization processes of bundles. To investigate directionality aspects in sequence-structure relationships, we reversed the amino acid sequences of two well-characterized, highly regular four-α-helical bundle proteins and studied the folding, oligomerization, and structural properties of the retro-proteins, using Circular Dichroism Spectroscopy (CD), Size Exclusion Chromatography combined with Multi-Angle Laser Light Scattering (SEC-MALS), and Small Angle X-ray Scattering (SAXS). The comparison of the parent proteins with their retro-counterparts reveals that while the α-helical character of the parents is affected to varying degrees by sequence reversal, the folding states, oligomerization propensities, structural stabilities, and shapes of the new molecules strongly depend on the characteristics of the heptad repeat patterns. The highest similarities between parent and retro-proteins are associated with the presence of uninterrupted heptad patterns in helical bundles sequences.


Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cromatografia em Gel , Dicroísmo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peptídeos , Conformação Proteica em alfa-Hélice , Proteínas de Ligação a RNA/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
Shokuhin Eiseigaku Zasshi ; 62(2): 65-72, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33883338

RESUMO

This study determined the configuration of the isomers of tadalafil, nortadalafil, and homotadalafil in dietary supplements. The products purchased over the Internet studied included a honey product and a tablet, which contained tadalafil, and a candy, which contained nortadalafil and homotadalafil. Each of the pharmaceutical ingredients isolated from the products was measured with circular dichroism (CD).As a result, the CD spectrum of each isolated pharmaceutical ingredient was found to align with the standard CD spectrum of the 6R,12aR isomer, confirmed that each isolated tadalafil or tadalafil analogue included in a 6R,12aR isomer. According to a report, among the stereoisomers of tadalafil, the 6R,12aR isomers have the most potent inhibitory activities of phosphodiesterase-type-5. From the report, the potential strength of the inhibitory activity of the 6R,12aR isomers of nortadalafil and homotadalafil was suggested. Therefore, it seemed that the 6R,12aR isomer often used in the product.


Assuntos
Suplementos Nutricionais , Cromatografia Líquida de Alta Pressão , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Suplementos Nutricionais/análise , Espectroscopia de Ressonância Magnética , Tadalafila
18.
J Biol Chem ; 294(43): 15826-15835, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31495783

RESUMO

Amyloidosis-associated amyloid fibrils are formed by denatured proteins when supersaturation of denatured proteins is broken. ß2-Microglobulin (ß2m) forms amyloid fibrils and causes dialysis-related amyloidosis in patients receiving long-term hemodialysis. Although amyloid fibrils of ß2m in patients are observed at neutral pH, formation of ß2m amyloids in vitro has been difficult to discern at neutral pH because of the amyloid-resistant native structure. Here, to further understand the mechanism underlying in vivo amyloid formation, we investigated the relationship between protein folding/unfolding and misfolding leading to amyloid formation. Using thioflavin T assays, CD spectroscopy, and transmission EM analyses, we found that ß2m efficiently forms amyloid fibrils even at neutral pH by heating with agitation at high-salt conditions. We constructed temperature- and NaCl concentration-dependent conformational phase diagrams in the presence or absence of agitation, revealing how amyloid formation under neutral pH conditions is related to thermal unfolding and breakdown of supersaturation. Of note, after supersaturation breakdown and following the law of mass action, the ß2m monomer equilibrium shifted to the unfolded state, destabilizing the native state and thereby enabling amyloid formation even under physiological conditions with a low amount of unfolded precursor. The amyloid fibrils depolymerized at both lower and higher temperatures, resembling cold- or heat-induced denaturation of globular proteins. Our results suggest an important role for heating in the onset of dialysis-related amyloidosis and related amyloidoses.


Assuntos
Amiloide/química , Calefação , Microglobulina beta-2/química , Humanos , Concentração de Íons de Hidrogênio , Desdobramento de Proteína , Cloreto de Sódio/farmacologia , Ultrassom
19.
J Biol Chem ; 294(14): 5657-5665, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30755483

RESUMO

α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or ß-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.


Assuntos
Catequina/análogos & derivados , Metionina/química , Agregados Proteicos , Dobramento de Proteína , alfa-Sinucleína/química , Catequina/química , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Metionina/metabolismo , Oxirredução , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , alfa-Sinucleína/metabolismo
20.
J Biol Chem ; 294(16): 6397-6404, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30814250

RESUMO

As anionic biopolymers, oligonucleotides can have biological functions independent from their roles as the medium for the storage and flow of genetic information. In this paper, we investigated the interaction between DNA and the pro-inflammatory cytokine tumor necrosis factor-α (TNFα). Although various forms of DNA bind to TNFα with low µm dissociation constants, the interaction stabilizes the trimeric form of TNFα and enhances its cytotoxic effect. Based on this mechanism, a photoswitchable TNFα (TNFα-2-nitroveratryloxycarbonyl) has been designed whose sensitivity to DNA-mediated up-regulation of TNFα activity can be tuned by light irradiation. The mechanism described in this study represents a general model to understand the involvement of nonspecific interactions among biomolecules in regulating their biological functions. Because the interaction is not DNA sequence-specific, the resulting effect should be considered for oligonucleotide-based therapeutics in general.


Assuntos
DNA/química , Multimerização Proteica , Fator de Necrose Tumoral alfa/química , Animais , Linhagem Celular , DNA/metabolismo , Humanos , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA