Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(17): e101859, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31368592

RESUMO

The phytohormone abscisic acid (ABA) regulates plant responses to abiotic stress, such as drought and high osmotic conditions. The multitude of functionally redundant components involved in ABA signaling poses a major challenge for elucidating individual contributions to the response selectivity and sensitivity of the pathway. Here, we reconstructed single ABA signaling pathways in yeast for combinatorial analysis of ABA receptors and coreceptors, downstream-acting SnRK2 protein kinases, and transcription factors. The analysis shows that some ABA receptors stimulate the pathway even in the absence of ABA and that SnRK2s are major determinants of ABA responsiveness by differing in the ligand-dependent control. Five SnRK2s, including SnRK2.4 known to be active under osmotic stress in plants, activated ABA-responsive transcription factors and were regulated by ABA receptor complexes in yeast. In the plant tissue, SnRK2.4 and ABA receptors competed for coreceptor interaction in an ABA-dependent manner consistent with a tight integration of SnRK2.4 into the ABA signaling pathway. The study establishes the suitability of the yeast system for the dissection of core signaling cascades and opens up future avenues of research on ligand-receptor regulation.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Leveduras/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Fosforilação , Engenharia de Proteínas , Proteínas Serina-Treonina Quinases/genética , Leveduras/genética
2.
New Phytol ; 229(4): 2035-2049, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33048351

RESUMO

Plant stomata play a crucial role in leaf function, controlling water transpiration in response to environmental stresses and modulating the gas exchange necessary for photosynthesis. The phytohormone abscisic acid (ABA) promotes stomatal closure and inhibits light-induced stomatal opening. The Arabidopsis thaliana E3 ubiquitin ligase COP1 functions in ABA-mediated stomatal closure. However, the underlying molecular mechanisms are still not fully understood. Yeast two-hybrid assays were used to identify ABA signaling components that interact with COP1, and biochemical, molecular and genetic studies were carried out to elucidate the regulatory role of COP1 in ABA signaling. The cop1 mutants are hyposensitive to ABA-triggered stomatal closure under light and dark conditions. COP1 interacts with and ubiquitinates the Arabidopsis clade A type 2C phosphatases (PP2Cs) ABI/HAB group and AHG3, thus triggering their degradation. Abscisic acid enhances the COP1-mediated degradation of these PP2Cs. Mutations in ABI1 and AHG3 partly rescue the cop1 stomatal phenotype and the phosphorylation level of OST1, a crucial SnRK2-type kinase in ABA signaling. Our data indicate that COP1 is part of a novel signaling pathway promoting ABA-mediated stomatal closure by regulating the stability of a subset of the Clade A PP2Cs. These findings provide novel insights into the interplay between ABA and the light signaling component in the modulation of stomatal movement.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Estômatos de Plantas/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Complexo I de Proteína do Envoltório , Mutação/genética , Proteínas Quinases/fisiologia
3.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281157

RESUMO

Post-translational modifications play a fundamental role in regulating protein function and stability. In particular, protein ubiquitylation is a multifaceted modification involved in numerous aspects of plant biology. Landmark studies connected the ATP-dependent ubiquitylation of substrates to their degradation by the 26S proteasome; however, nonproteolytic functions of the ubiquitin (Ub) code are also crucial to regulate protein interactions, activity, and localization. Regarding proteolytic functions of Ub, Lys-48-linked branched chains are the most common chain type for proteasomal degradation, whereas promotion of endocytosis and vacuolar degradation is triggered through monoubiquitylation or Lys63-linked chains introduced in integral or peripheral plasma membrane proteins. Hormone signaling relies on regulated protein turnover, and specifically the half-life of ABA signaling components is regulated both through the ubiquitin-26S proteasome system and the endocytic/vacuolar degradation pathway. E3 Ub ligases have been reported that target different ABA signaling core components, i.e., ABA receptors, PP2Cs, SnRK2s, and ABFs/ABI5 transcription factors. In this review, we focused specifically on the ubiquitylation of ABA receptors and PP2C coreceptors, as well as other post-translational modifications of ABA receptors (nitration and phosphorylation) that result in their ubiquitination and degradation.


Assuntos
Ácido Abscísico/metabolismo , Proteína Fosfatase 2C/metabolismo , Estresse Fisiológico/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Exp Bot ; 65(15): 4451-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24863435

RESUMO

Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Quinolonas/metabolismo , Solanum lycopersicum/metabolismo , Sulfonamidas/metabolismo , Ácido Abscísico/agonistas , Adaptação Fisiológica , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteína Fosfatase 2C
5.
Plants (Basel) ; 9(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283717

RESUMO

DELAY OF GERMINATION-1 (DOG1), is a master regulator of primary dormancy (PD) that acts in concert with ABA to delay germination. The ABA and DOG1 signaling pathways converge since DOG1 requires protein phosphatase 2C (PP2C) to control PD. DOG1 enhances ABA signaling through its binding to PP2C ABA HYPERSENSITIVE GERMINATION (AHG1/AHG3). DOG1 suppresses the AHG1 action to enhance ABA sensitivity and impose PD. To carry out this suppression, the formation of DOG1-heme complex is essential. The binding of DOG1-AHG1 to DOG1-Heme is an independent processes but essential for DOG1 function. The quantity of active DOG1 in mature and viable seeds is correlated with the extent of PD. Thus, dog1 mutant seeds, which have scarce endogenous ABA and high gibberellin (GAs) content, exhibit a non-dormancy phenotype. Despite being studied extensively in recent years, little is known about the molecular mechanism underlying the transcriptional regulation of DOG1. However, it is well-known that the physiological function of DOG1 is tightly regulated by a complex array of transformations that include alternative splicing, alternative polyadenylation, histone modifications, and a cis-acting antisense non-coding transcript (asDOG1). The DOG1 becomes modified (i.e., inactivated) during seed after-ripening (AR), and its levels in viable seeds do not correlate with germination potential. Interestingly, it was recently found that the transcription factor (TF) bZIP67 binds to the DOG1 promoter. This is required to activate DOG1 expression leading to enhanced seed dormancy. On the other hand, seed development under low-temperature conditions triggers DOG1 expression by increasing the expression and abundance of bZIP67. Together, current data indicate that DOG1 function is not strictly limited to PD process, but that it is also required for other facets of seed maturation, in part by also interfering with the ethylene signaling components. Otherwise, since DOG1 also affects other processes such us flowering and drought tolerance, the approaches to understanding its mechanism of action and control are, at this time, still inconclusive.

6.
Mol Plant ; 10(3): 456-469, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-27746300

RESUMO

Drought is a major abiotic stress that causes the yearly yield loss of maize, a crop cultured worldwide. Breeding drought-tolerant maize cultivars is a priority requirement of world agriculture. Clade A PP2C phosphatases (PP2C-A), which are conserved in most plant species, play important roles in abscisic acid (ABA) signaling and plant drought response. However, natural variations of PP2C-A genes that are directly associated with drought tolerance remain to be elucidated. Here, we conducted a candidate gene association analysis of the ZmPP2C-A gene family in a maize panel consisting of 368 varieties collected worldwide, and identified a drought responsive gene ZmPP2C-A10 that is tightly associated with drought tolerance. We found that the degree of drought tolerance of maize cultivars negatively correlates with the expression levels of ZmPP2C-A10. ZmPP2C-A10, like its Arabidopsis orthologs, interacts with ZmPYL ABA receptors and ZmSnRK2 kinases, suggesting that ZmPP2C-A10 is involved in mediating ABA signaling in maize. Transgenic studies in maize and Arabidopsis confirmed that ZmPP2C-A10 functions as a negative regulator of drought tolerance. Further, a causal natural variation, deletion allele-338, which bears a deletion of ERSE (endoplasmic reticulum stress response element) in the 5'-UTR region of ZmPP2C-A10, was detected. This deletion causes the loss of endoplasmic reticulum (ER) stress-induced expression of ZmPP2C-A10, leading to increased plant drought tolerance. Our study provides direct evidence linking ER stress signaling with drought tolerance and genetic resources that can be used directly in breeding drought-tolerant maize cultivars.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Plântula/metabolismo , Zea mays/metabolismo , Secas , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA