RESUMO
A two-fold enhancement in the sensitivity of atmospheric CO2 growth rate (CGR) to tropical temperature interannual variability ( Γ CGR T $$ {\varGamma}_{\mathrm{CGR}}^T $$ ) till early 2000s has been reported, which suggests a drought-induced shift in terrestrial carbon cycle responding temperature fluctuations, thereby accelerating global warming. However, using six decades long atmospheric CO2 observations, we show that Γ CGR T $$ {\varGamma}_{\mathrm{CGR}}^T $$ has significantly declined in the last two decades, to the level during the 1960s. The Γ CGR T $$ {\varGamma}_{\mathrm{CGR}}^T $$ decline begs the question of whether the sensitivity of ecosystem carbon cycle to temperature variations at local scale has largely decreased. With state-of-the-art dynamic global vegetation models, we further find that the recent Γ CGR T $$ {\varGamma}_{\mathrm{CGR}}^T $$ decline is barely attributed to ecosystem carbon cycle response to temperature fluctuations at local scale, which instead results from a decrease in spatial coherence in tropical temperature variability and land use change. Our results suggest that the recently reported loss of rainforest resilience has not shown marked influence on the temperature sensitivity of ecosystem carbon cycle. Nevertheless, the increasing extent of land use change as well as more frequent and intensive drought events are likely to modulate the responses of ecosystem carbon cycle to temperature variations in the future. Therefore, our study highlights the priority to continuously monitor the temperature sensitivity of CGR variability and improve Earth system model representation on land use change, in order to predict the carbon-climate feedback.
Assuntos
Dióxido de Carbono , Ecossistema , Temperatura , Ciclo do Carbono/fisiologia , Clima TropicalRESUMO
Grazing exclusion (GE), as an effective strategy for revitalizing degraded grasslands, possesses the potential to increase ecosystem respiration (Re) and significantly influence the capacity of grassland soils to sequester carbon. However, our current grasp of Re dynamics in response to varying durations of GE, particularly in the context of precipitation fluctuations, remains incomplete. To fill this knowledge gap, we conducted a monitoring of Re over a 40-year GE chronosequence within Inner Mongolia temperate typical steppe across two distinct hydrologically years. Overall, Re exhibited a gradual saturation curve and an increasing trend with the duration of GE in the wet year of 2021 and the normal precipitation year of 2022, respectively. The variance primarily stemmed from relatively higher microbial biomass carbon observed in the short-term GE during 2022 in contrast to 2021. Moreover, the impacts of GE on the sensitivities of Re to moisture and temperature were intricately tied to precipitation patterns. increasing significantly with prolonged GE duration in 2022 but not in 2021. Our study highlights the intricate interplay between GE duration, precipitation variability, and Re dynamics. This deeper understanding enhances our ability to predict and manage carbon cycling within typical steppe in Inner Mongolia, offering invaluable insights for effective restoration strategies and climate change mitigation.
Assuntos
Biomassa , China , Ciclo do Carbono , Chuva , Solo , Microbiologia do SoloRESUMO
Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.
Assuntos
Ecossistema , Sphagnopsida , Sphagnopsida/fisiologia , Dióxido de Carbono/metabolismo , Mudança Climática , Transporte Biológico , Plantas/metabolismoRESUMO
Wetlands are crucial nodes in the carbon cycle, emitting approximately 20% of global CH4 while also sequestering 20%-30% of all soil carbon. Both greenhouse gas fluxes and carbon storage are driven by microbial communities in wetland soils. However, these key players are often overlooked or overly simplified in current global climate models. Here, we first integrate microbial metabolisms with biological, chemical, and physical processes occurring at scales from individual microbial cells to ecosystems. This conceptual scale-bridging framework guides the development of feedback loops describing how wetland-specific climate impacts (i.e., sea level rise in estuarine wetlands, droughts and floods in inland wetlands) will affect future climate trajectories. These feedback loops highlight knowledge gaps that need to be addressed to develop predictive models of future climates capturing microbial contributions. We propose a roadmap connecting environmental scientific disciplines to address these knowledge gaps and improve the representation of microbial processes in climate models. Together, this paves the way to understand how microbially mediated climate feedbacks from wetlands will impact future climate change.
RESUMO
Significant attention has been given to the way in which the soil nitrogen (N) cycle responds to permafrost thaw in recent years, yet little is known about anaerobic N transformations in thermokarst lakes, which account for more than one-third of thermokarst landforms across permafrost regions. Based on the N isotope dilution and tracing technique, combined with qPCR and high-throughput sequencing, we presented large-scale measurements of anaerobic N transformations of sediments across 30 thermokarst lakes over the Tibetan alpine permafrost region. Our results showed that gross N mineralization, ammonium immobilization, and dissimilatory nitrate reduction rates in thermokarst lakes were higher in the eastern part of our study area than in the west. Denitrification dominated in the dissimilatory nitrate reduction processes, being two and one orders of magnitude higher than anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA), respectively. The abundances of the dissimilatory nitrate reduction genes (nirK, nirS, hzsB, and nrfA) exhibited patterns consistent with sediment N transformation rates, while α diversity did not. The inter-lake variability in gross N mineralization and ammonium immobilization was dominantly driven by microbial biomass, while the variability in anammox and DNRA was driven by substrate supply and organic carbon content, respectively. Denitrification was jointly affected by nirS abundance and organic carbon content. Overall, the patterns and drivers of anaerobic N transformation rates detected in this study provide a new perspective on potential N release, retention, and removal upon the formation and development of thermokarst lakes.
Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Lagos , Nitrogênio , Anaerobiose , Desnitrificação , Compostos Orgânicos , CarbonoRESUMO
Climate warming is predicted to considerably affect variations in soil organic carbon (SOC), especially in alpine ecosystems. Microbial necromass carbon (MNC) is an important contributor to stable soil organic carbon pools. However, accumulation and persistence of soil MNC across a gradient of warming are still poorly understood. An 8-year field experiment with four levels of warming was conducted in a Tibetan meadow. We found that low-level (+0-1.5°C) warming mostly enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total MNC compared with control treatment across soil layers, while no significant effect was caused between high-level (+1.5-2.5°C) treatments and control treatments. The contributions of both MNC and BNC to soil organic carbon were not significantly affected by warming treatments across depths. Structural equation modeling analysis demonstrated that the effect of plant root traits on MNC persistence strengthened with warming intensity, while the influence of microbial community characteristics waned along strengthened warming. Overall, our study provides novel evidence that the major determinants of MNC production and stabilization may vary with warming magnitude in alpine meadows. This finding is critical for updating our knowledge on soil carbon storage in response to climate warming.
Assuntos
Microbiota , Microbiologia do Solo , Pradaria , Carbono/análise , Solo/química , Tibet , Raízes de Plantas/químicaRESUMO
Microbial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.
Assuntos
Ecossistema , Microbiota , Carbono/metabolismo , Solo , Microbiologia do Solo , Mudança Climática , Nitrogênio/análiseRESUMO
The effect of the Southern Ocean on global climate change is assessed using Earth system model projections following an idealized 1% annual rise in atmospheric CO2. For this scenario, the Southern Ocean plays a significant role in sequestering heat and anthropogenic carbon, accounting for 40% ± 5% of heat uptake and 44% ± 2% of anthropogenic carbon uptake over the global ocean (with the Southern Ocean defined as south of 36°S). This Southern Ocean fraction of global heat uptake is however less than in historical scenarios with marked hemispheric contrasts in radiative forcing. For this idealized scenario, inter-model differences in global and Southern Ocean heat uptake are strongly affected by physical feedbacks, especially cloud feedbacks over the globe and surface albedo feedbacks from sea-ice loss in high latitudes, through the top-of-the-atmosphere energy balance. The ocean carbon response is similar in most models with carbon storage increasing from rising atmospheric CO2, but weakly decreasing from climate change with competing ventilation and biological contributions over the Southern Ocean. The Southern Ocean affects a global climate metric, the transient climate response to emissions, accounting for 28% of its thermal contribution through its physical climate feedbacks and heat uptake, and so affects inter-model differences in meeting warming targets. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
RESUMO
Significant shock of climate change on crop yield will challenge the performance of bio-crop on substituting fossil energy to mitigate climate change. Taking cassava-to-ethanol system in Guangxi Province of South China as an example, we coupled a random forest (RF) model with 10 Global climate models (GCMs) outputs to predict the future cassava yields. Subsequently, the net energy value (NEV) and greenhouse gas (GHG) emissions of the cassava-to-ethanol system across varied topographies are assessed using a life cycle analysis. We demonstrate that the abrupt increases in temperatures are the primary contributors to declining yields. Notably, cassava yields in hilly regions decline more than those in plains and display greater variability among concentration pathway scenarios over time. Future NEV and GHG performance of cassava-to-ethanol will undergo significant decreases over time, especially within the high concentration pathway scenario (NEV decrease 28%, GHG increase 3.4% from 2006 to 2100). The performance reductions in hilly area are exacerbated by more harvest loss and labor and material inputs during the "field-to-wheel", negating its energy advantage over fossil fuels. Therefore, adopting a lower concentration pathway and favoring plantation in plains could maintain cassava-to-ethanol as a viable climate mitigation strategy. Our research also advances the methodological approach to climate change adaptation within the domain of life cycle assessment.
Assuntos
Gases de Efeito Estufa , Manihot , Efeito Estufa , Etanol , Mudança Climática , China , VerdurasRESUMO
Reconstructions of past climate impact, that is, radiative forcing (RF), of peatland carbon (C) dynamics show that immediately after peatland initiation the climate warming effect of CH4 emissions exceeds the cooling effect of CO2 uptake, but thereafter the net effect of most peatlands will move toward cooling, when RF switches from positive to negative. Reconstructing peatland C dynamics necessarily involves uncertainties related to basic assumptions on past CO2 flux, CH4 emission and peatland expansion. We investigated the effect of these uncertainties on the RF of three peatlands, using either apparent C accumulation rates, net C balance (NCB) or NCB plus C loss during fires as basis for CO2 uptake estimate; applying a plausible range for CH4 emission; and assuming linearly interpolated expansion between basal dates or comparatively early or late expansion. When we factored that some C would only be stored temporarily (NCB and NCB+fire), the estimated past cooling effect of CO2 uptake increased, but the present-day RF was affected little. Altering the assumptions behind the reconstructed CO2 flux or expansion patterns caused the RF to peak earlier and advanced the switch from positive to negative RF by several thousand years. Compared with NCB, including fires had only small additional effect on RF lasting less than 1000 year. The largest uncertainty in reconstructing peatland RF was associated with CH4 emissions. As shown by the consistently positive RF modelled for one site, and in some cases for the other two, peatlands with high CH4 emissions and low C accumulation rates may have remained climate warming agents since their initiation. Although uncertainties in present-day RF were mainly due to the assumed CH4 emission rates, the uncertainty in lateral expansion still had a significant effect on the present-day RF, highlighting the importance to consider uncertainties in the past peatland C balance in RF reconstructions.
Assuntos
Dióxido de Carbono , Metano , Carbono , Dióxido de Carbono/análise , Solo , IncertezaRESUMO
Microbial necromass carbon (C) has been considered an important contributor to persistent soil C pool. However, there still lacks large-scale systematic observations on microbial necromass C in different soil layers, particularly for alpine ecosystems. Besides, it is still unclear whether the relative importance of biotic and abiotic variables such as plant C input and mineral properties in regulating microbial necromass C would change with soil depth. Based on the combination of large-scale sampling along a ~2200 km transect across Tibetan alpine grasslands and biomarker analysis, together with a global data synthesis across grassland ecosystems, we observed a relatively low proportion of microbial-derived C in Tibetan alpine grasslands compared to global grasslands (topsoil: 45.4% vs. 58.1%; subsoil: 41.7% vs. 53.7%). We also found that major determinants of microbial necromass C depended on soil depth. In topsoil, both plant C input and mineral protection exerted dominant effects on microbial necromass C. However, in subsoil, the physico-chemical protection provided by soil clay particles, iron-aluminum oxides, and exchangeable calcium dominantly facilitated the preservation of microbial necromass C. The differential drivers over microbial necromass C between soil depths should be considered in Earth system models for accurately forecasting soil C dynamics and its potential feedback to global warming.
Assuntos
Carbono , Solo , Carbono/análise , Ecossistema , Pradaria , Solo/química , Microbiologia do Solo , TibetRESUMO
Wetlands are large sinks of carbon dioxide (CO2) and sources of methane (CH4). Both fluxes can be altered by wetland management (e.g., restoration), leading to changes in the climate system. Here, we use multiple models to assess CH4 emissions and CO2 sequestration from the wetlands in China and the impacts on climate under three climate scenarios and four wetland management scenarios with various levels of wetland restoration in the 21st century. We find that wetland restoration leads to increased CH4 emissions with a national total of 0.32-11.31 Tg yr-1. These emissions induce an additional radiative forcing of 0.0005-0.0075 W m-2 yr-1 and global annual mean air temperature rise of 0.0003-0.0053 °C yr-1, across all future climate and management scenarios. However, wetland restoration also resulted in net CO2 sequestration, leading to a combined net greenhouse gas sink in all climate management scenarios, except in the highest restoration level combined with the hottest climate scenario. The highest climate cooling was achieved under medium restoration, with the climate scenario consistent with the Paris agreement target of below 2 °C, with a cumulative global warming potential of -3.2 Pg CO2-eq (2020-2100). Wetland restoration in the Qinghai-Tibet Plateau offers the greatest cooling effect.
Assuntos
Metano , Áreas Alagadas , Dióxido de Carbono/análise , China , Retroalimentação , Metano/análiseRESUMO
Warming-induced permafrost thaw may stimulate soil respiration (Rs) and thus cause a positive feedback to climate warming. However, due to the limited in situ observations, it remains unclear about how Rs and its autotrophic (Ra) and heterotrophic (Rh) components change upon permafrost thaw. Here we monitored variations in Rs and its components along a permafrost thaw sequence on the Tibetan Plateau, and explored the potential linkage of Rs components (i.e., Ra and Rh) with biotic (e.g., plant functional traits and soil microbial diversity) and abiotic factors (e.g., substrate quality). We found that Ra and Rh exhibited divergent responses to permafrost collapse: Ra increased with the time of thawing, while Rh exhibited a hump-shaped pattern along the thaw sequence. We also observed different drivers of thaw-induced changes in the ratios of Ra:Rs and Rh:Rs. Except for soil water status, plant community structure, diversity, and root properties explained the variation in Ra:Rs ratio, soil substrate quality and microbial diversity were key factors associated with the dynamics of Rh:Rs ratio. Overall, these findings demonstrate divergent patterns and drivers of Rs components as permafrost thaw prolongs, which call for considerations in Earth system models for better forecasting permafrost carbon-climate feedback.
Assuntos
Pergelissolo , Processos Autotróficos , Ciclo do Carbono , Respiração , Solo/químicaRESUMO
Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability. We combined 3-year field observations along a thaw sequence (constituted by four thaw stages, i.e., non-collapse and 5, 14, and 22 years since collapse) with an in-situ fertilization experiment (included N and P additions at the level of 10 g N m-2 year-1 and 10 g P m-2 year-1 ) to evaluate ecosystem C-nutrient interactions upon permafrost thaw. We found that changes in soil P availability rather than N availability played an important role in regulating gross primary productivity and net ecosystem productivity along the thaw sequence. The fertilization experiment confirmed that P addition had stronger effects on plant growth than N addition in this permafrost ecosystem. These two lines of evidence highlight the crucial role of soil P availability in altering the trajectory of permafrost C cycle under climate warming.
Assuntos
Pergelissolo , Carbono , Ecossistema , Nitrogênio , FósforoRESUMO
Permafrost thaw could induce substantial carbon (C) emissions to the atmosphere, and thus trigger a positive feedback to climate warming. As the engine of biogeochemical cycling, soil microorganisms exert a critical role in mediating the direction and strength of permafrost C-climate feedback. However, our understanding about the impacts of thermokarst (abrupt permafrost thaw) on microbial structure and function remains limited. Here we employed metagenomic sequencing to analyze changes in topsoil (0-15 cm) microbial communities and functional genes along a permafrost thaw sequence (1, 10, and 16 years since permafrost collapse) on the Tibetan Plateau. By combining laboratory incubation and a two-pool model, we then explored changes in soil labile and stable C decomposition along the thaw sequence. Our results showed that topsoil microbial α-diversity decreased, while the community structure and functional gene abundance did not exhibit any significant change at the early stage of collapse (1 year since collapse) relative to non-collapsed control. However, as the time since the collapse increased, both the topsoil microbial community structure and functional genes differed from the control. Abundances of functional genes involved in labile C degradation decreased while those for stable C degradation increased at the late stage of collapse (16 years since collapse), largely driven by changes in substrate properties along the thaw sequence. Accordingly, faster stable C decomposition occurred at the late stage of collapse compared to the control, which was associated with the increase in relative abundance of functional genes for stable C degradation. These results suggest that upland thermokarst alters microbial structure and function, particularly enhances soil stable C decomposition by modulating microbial functional genes, which could reinforce a warmer climate over the decadal timescale.
Assuntos
Microbiota , Pergelissolo , Carbono , Solo , Microbiologia do SoloRESUMO
Methane (CH4 ), a potent greenhouse gas, is the second most important greenhouse gas contributor to climate change after carbon dioxide (CO2 ). The biological emissions of CH4 from wetlands are a major uncertainty in CH4 budgets. Microbial methanogenesis by Archaea is an anaerobic process accounting for most biological CH4 production in nature, yet recent observations indicate that large emissions can originate from oxygenated or frequently oxygenated wetland soil layers. To determine how oxygen (O2 ) can stimulate CH4 emissions, we used incubations of Sphagnum peat to demonstrate that the temporary exposure of peat to O2 can increase CH4 yields up to 2000-fold during subsequent anoxic conditions relative to peat without O2 exposure. Geochemical (including ion cyclotron resonance mass spectrometry, X-ray absorbance spectroscopy) and microbiome (16S rDNA amplicons, metagenomics) analyses of peat showed that higher CH4 yields of redox-oscillated peat were due to functional shifts in the peat microbiome arising during redox oscillation that enhanced peat carbon (C) degradation. Novosphingobium species with O2 -dependent aromatic oxygenase genes increased greatly in relative abundance during the oxygenation period in redox-oscillated peat compared to anoxic controls. Acidobacteria species were particularly important for anaerobic processing of peat C, including in the production of methanogenic substrates H2 and CO2 . Higher CO2 production during the anoxic phase of redox-oscillated peat stimulated hydrogenotrophic CH4 production by Methanobacterium species. The persistence of reduced iron (Fe(II)) during prolonged oxygenation in redox-oscillated peat may further enhance C degradation through abiotic mechanisms (e.g., Fenton reactions). The results indicate that specific functional shifts in the peat microbiome underlie O2 enhancement of CH4 production in acidic, Sphagnum-rich wetland soils. They also imply that understanding microbial dynamics spanning temporal and spatial redox transitions in peatlands is critical for constraining CH4 budgets; predicting feedbacks between climate change, hydrologic variability, and wetland CH4 emissions; and guiding wetland C management strategies.
Assuntos
Oxigênio , Áreas Alagadas , Dióxido de Carbono/análise , Metano , SoloRESUMO
Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011-2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was -718â ±â 128 g C m-2 as a sink in the pre-disturbance years (2011-2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%-93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.
Assuntos
Ecossistema , Neve , Carbono , Dióxido de Carbono , Mudança Climática , FlorestasRESUMO
The impact of human emissions of carbon dioxide and methane on climate is an accepted central concern for current society. It is increasingly evident that atmospheric concentrations of carbon dioxide and methane are not simply a function of emissions but that there are myriad feedbacks forced by changes in climate that affect atmospheric concentrations. If these feedbacks change with changing climate, which is likely, then the effect of the human enterprise on climate will change. Quantifying, understanding, and articulating the feedbacks within the carbon-climate system at the process level are crucial if we are to employ Earth system models to inform effective mitigation regimes that would lead to a stable climate. Recent advances using space-based, more highly resolved measurements of carbon exchange and its component processes-photosynthesis, respiration, and biomass burning-suggest that remote sensing can add key spatial and process resolution to the existing in situ systems needed to provide enhanced understanding and advancements in Earth system models. Information about emissions and feedbacks from a long-term carbon-climate observing system is essential to better stewardship of the planet.
RESUMO
We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon-climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon-climate feedback.
RESUMO
Satellite measurements and radiative calculations show that Earth's outgoing longwave radiation (OLR) is an essentially linear function of surface temperature over a wide range of temperatures (â³60 K). Linearity implies that radiative forcing has the same impact in warmer as in colder climates and is thus of fundamental importance for understanding past and future climate change. Although the evidence for a nearly linear relation was first pointed out more than 50 y ago, it is still unclear why this relation is valid and when it breaks down. Here we present a simple semianalytical model that explains Earth's linear OLR as an emergent property of an atmosphere whose greenhouse effect is dominated by a condensable gas. Linearity arises from a competition between the surface's increasing thermal emission and the narrowing of spectral window regions with warming and breaks down at high temperatures once continuum absorption cuts off spectral windows. Our model provides a way of understanding the longwave contribution to Earth's climate sensitivity and suggests that extrasolar planets with other condensable greenhouse gases could have climate dynamics similar to Earth's.