Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(24): 5854-5868.e20, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34822783

RESUMO

Jellyfish are radially symmetric organisms without a brain that arose more than 500 million years ago. They achieve organismal behaviors through coordinated interactions between autonomously functioning body parts. Jellyfish neurons have been studied electrophysiologically, but not at the systems level. We introduce Clytia hemisphaerica as a transparent, genetically tractable jellyfish model for systems and evolutionary neuroscience. We generate stable F1 transgenic lines for cell-type-specific conditional ablation and whole-organism GCaMP imaging. Using these tools and computational analyses, we find that an apparently diffuse network of RFamide-expressing umbrellar neurons is functionally subdivided into a series of spatially localized subassemblies whose synchronous activation controls directional food transfer from the tentacles to the mouth. These data reveal an unanticipated degree of structured neural organization in this species. Clytia affords a platform for systems-level studies of neural function, behavior, and evolution within a clade of marine organisms with growing ecological and economic importance.


Assuntos
Evolução Biológica , Hidrozoários/genética , Modelos Animais , Neurociências , Animais , Animais Geneticamente Modificados , Comportamento Animal , Comportamento Alimentar , Marcação de Genes , Hidrozoários/fisiologia , Modelos Biológicos , Rede Nervosa/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo
2.
Proc Biol Sci ; 291(2021): 20232626, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654652

RESUMO

Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.


Assuntos
Antozoários , Evolução Biológica , Luminescência , Filogenia , Animais , Antozoários/genética
3.
Front Zool ; 21(1): 8, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500146

RESUMO

BACKGROUND: The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al. Cell 173(6):1520-1534.e20). However, the mapping of the single cell reads still suffers from relatively poor gene annotations and a draft genome consisting of many scaffolds. RESULTS: Here we present a new wildtype resource of the developmental single cell atlas, by re-mapping of sequence data first published in Steger et al. (2022) and Cole et al. (Nat Commun 14(1):1747, 2023), to the new chromosome-level genome assembly and corresponding gene models in Zimmermann et al. (Nat Commun 14, 8270 (2023). https://doi.org/10.1038/s41467-023-44080-7 ). We expand the pre-existing dataset through the incorporation of additional sequence data derived from the capture and sequencing of cell suspensions from four additional samples: 24 h gastrula, 2d planula, an inter-parietal region of the bodywall from a young unsexed animal, and another adult mesentery from a mature male animal. CONCLUSION: Our analyses of the full cell-state inventory provide transcriptomic signatures for 127 distinct cell states, of which 47 correspond to neuroglandular subtypes. We also identify two distinct putatively immune-related transcriptomic profiles that segregate between the inner and outer cell layers. Furthermore, the new gene annotation Nv2 has markedly improved the mapping on the single cell transcriptome data and will therefore be of great value for the community and anyone using the dataset.

4.
Pharmacol Res ; 203: 107173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580186

RESUMO

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Assuntos
Cnidários , Peptídeos , Receptores de Neuropeptídeo Y , Animais , Humanos , Camundongos , Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ligantes , Simulação de Acoplamento Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Peptídeos/farmacologia , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores de Neuropeptídeo Y/efeitos dos fármacos , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/efeitos dos fármacos , Quinases da Família src/metabolismo , Peixe-Zebra , Cnidários/química , Fosfoinositídeo Fosfolipase C/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/metabolismo
5.
Proc Biol Sci ; 290(2004): 20222490, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37528711

RESUMO

Cnidarians are regarded as one of the earliest-diverging animal phyla. One of the hallmarks of the cnidarian body plan is the evolution of a free-swimming medusa in some medusozoan classes, but the origin of this innovation remains poorly constrained by the fossil record and molecular data. Previously described macrofossils, putatively representing medusa stages of crown-group medusozoans from the Cambrian of Utah and South China, are here reinterpreted as ctenophore-grade organisms. Other putative Ediacaran to Cambrian medusozoan fossils consist mainly of microfossils and tubular forms. Here we describe Burgessomedusa phasmiformis gen. et sp. nov., the oldest unequivocal macroscopic free-swimming medusa in the fossil record. Our study is based on 182 exceptionally preserved body fossils from the middle Cambrian Burgess Shale (Raymond Quarry, British Columbia, Canada). Burgessomedusa possesses a cuboidal umbrella up to 20 cm high and over 90 short, finger-like tentacles. Phylogenetic analysis supports a medusozoan affinity, most likely as a stem group to Cubozoa or Acraspeda (a group including Staurozoa, Cubozoa and Scyphozoa). Burgessomedusa demonstrates an ancient origin for the free-swimming medusa life stage and supports a growing number of studies showing an early evolutionary diversification of Medusozoa, including of the crown group, during the late Precambrian-Cambrian transition.


Assuntos
Evolução Biológica , Cnidários , Animais , Filogenia , Natação , Fósseis , Colúmbia Britânica
6.
Proc Biol Sci ; 290(2009): 20231563, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876192

RESUMO

Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.


Assuntos
Cnidários , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Genes Homeobox , Filogenia , Evolução Molecular , Família Multigênica
7.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37655651

RESUMO

Siphonophores are ubiquitous and often highly abundant members of pelagic ecosystems throughout the open ocean. They are unique among animal taxa in that many species use multiple jets for propulsion. Little is known about the kinematics of the individual jets produced by nectophores (the swimming bells of siphonophores) or whether the jets are coordinated during normal swimming behavior. Using remotely operated vehicles and SCUBA, we video recorded the swimming behavior of several physonect species in their natural environment. The pulsed kinematics of the individual nectophores that comprise the siphonophore nectosome were quantified and, based on these kinematics, we examined the coordination of adjacent nectophores. We found that, for the five species considered, nectophores located along the same side of the nectosomal axis (i.e. axially aligned) were coordinated and their timing was offset such that they pulsed metachronally. However, this level of coordination did not extend across the nectosome and no coordination was evident between nectophores on opposite sides of the nectosomal axis. For most species, the metachronal contraction waves of nectophores were initiated by the apical nectophores and traveled dorsally. However, the metachronal wave of Apolemia rubriversa traveled in the opposite direction. Although nectophore groups on opposite sides of the nectosome were not coordinated, they pulsed with similar frequencies. This enabled siphonophores to maintain relatively linear trajectories during swimming. The timing and characteristics of the metachronal coordination of pulsed jets affects how the jet wakes interact and may provide important insight into how interacting jets may be optimized for efficient propulsion.


Assuntos
Ecossistema , Hidrozoários , Animais , Fenômenos Biomecânicos , Natação
8.
Proc Natl Acad Sci U S A ; 117(37): 22880-22889, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868440

RESUMO

Polycomb group proteins are essential regulators of developmental processes across animals. Despite their importance, studies on Polycomb are often restricted to classical model systems and, as such, little is known about the evolution of these important chromatin regulators. Here we focus on Polycomb Repressive Complex 1 (PRC1) and trace the evolution of core components of canonical and non-canonical PRC1 complexes in animals. Previous work suggested that a major expansion in the number of PRC1 complexes occurred in the vertebrate lineage. We show that the expansion of the Polycomb Group RING Finger (PCGF) protein family, an essential step for the establishment of the large diversity of PRC1 complexes found in vertebrates, predates the bilaterian-cnidarian ancestor. This means that the genetic repertoire necessary to form all major vertebrate PRC1 complexes emerged early in animal evolution, over 550 million years ago. We further show that PCGF5, a gene conserved in cnidarians and vertebrates but lost in all other studied groups, is expressed in the nervous system in the sea anemone Nematostella vectensis, similar to its mammalian counterpart. Together this work provides a framework for understanding the evolution of PRC1 complex diversity and it establishes Nematostella as a promising model system in which the functional ramifications of this diversification can be further explored.


Assuntos
Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Animais , Antozoários/genética , Núcleo Celular/metabolismo , Cromatina/genética , Bases de Dados Genéticas , Evolução Molecular , Inativação Gênica/fisiologia , Variação Genética/genética , Humanos , Proteínas do Grupo Polycomb/genética , Vertebrados/genética
9.
Microb Pathog ; 165: 105464, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35247498

RESUMO

The present study describes two new Myxobolus species infecting the gills of Semaprochilodus insignis, the most consumed freshwater fish species in the Brazilian Amazon. The fish specimens were caught in the Tapajós River, in the state of Pará, and the morphological, ultrastructural, small subunit ribosomal DNA (ssrDNA), and phylogenetic data of the myxosporean species were obtained. Two species of Myxobolus were found in the gills of S. insignis. Myxobolus maiai n. sp. developed in the gill filaments, and mature myxospores were round-shaped from the frontal view, measuring 12.5-14.8 (13.9 ± 0.5) µm in length, 11.4-13.8 (12.3 ± 0.5) µm in width, and have a thickness of 6.4-7.7 (6.9 ± 0.6) µm in the lateral view, with symmetric values. Its polar capsules were 4.4-6.6 (5.5 ± 0.5) µm in length and 2.3-3.7 (3.0 ± 0.3) µm in width, and the polar tubules had 4 - 5 coils. Myxobolus iarakiensis n. sp. was found infecting the gill arch. Mature myxospores were oval-shaped from the frontal view, and measured 6.7-8.6 (8.0 ± 0.4) µm in length, 4.5-6.3 (5.6 ± 0.4) µm in width, and had a thickness of 2.7-4.7 (3.8 ± 0.5) µm in the lateral view, with symmetric values. Its polar capsules were 2.1-3.7 (2.9 ± 0.3) µm in length and 1.1-2.0 (1.5 ± 0.2) µm in width, and its polar tubules had 4 - 5 coils. The ssrDNA based phylogeny showed these two novel species as grouping in a clade composed of parasite species of Prochilodontidae hosts.


Assuntos
Doenças dos Peixes , Myxobolus , Doenças Parasitárias em Animais , Animais , Brasil , Cápsulas , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Doenças Parasitárias em Animais/parasitologia , Filogenia
10.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258622

RESUMO

Although neural tissues in cnidarian hydroids have a nerve net structure, some cnidarian medusae contain well-defined nerve tracts. As an example, the hydrozoan medusa Aglantha digitale has neural feeding circuits that show an alignment and condensation, which is absent in its relatives Aequorea victoria and Clytia hemisphaerica. In some cases, neural condensations take the form of fast propagating giant axons concerned with escape or evasion. Such giant axons appear to have developed from the fusion of many, much finer units. Ribosomal DNA analysis has identified the lineage leading to giant axon-based escape swimming in Aglantha and other members of the Aglaura clade of trachymedusan jellyfish. The Aglaura, along with sister subclades that include species such as Colobonema sericeum, have the distinctive ability to perform dual swimming, i.e. to swim at either high or low speeds. However, the form of dual swimming exhibited by Colobonema differs both biomechanically and physiologically from that in Aglantha and is not giant axon based. Comparisons between the genomes of such closely related species might provide a means to determine the molecular basis of giant axon formation and other neural condensations. The molecular mechanism responsible may involve 'fusogens', small molecules possibly derived from viruses, which draw membranes together prior to fusion. Identifying these fusogen-based mechanisms using genome analysis may be hindered by the many changes in anatomy and physiology that followed giant axon evolution, but the genomic signal-to-noise ratio may be improved by examining the convergent evolution of giant axons in other hydrozoa, such as the subclass Siphonophora.


Assuntos
Hidrozoários , Cifozoários , Animais , Axônios/fisiologia , Hidrozoários/genética , Filogenia , Cifozoários/fisiologia , Natação
11.
Mar Drugs ; 20(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36135760

RESUMO

Pelagia noctiluca stings are common in Mediterranean coastal areas and, although the venom is non-lethal, they are painful. Due to its high toxicity and abundance, P. noctiluca is considered a target species for the focus of research on active ingredients to reduce the symptoms of its sting. To determine the effect of 31 substances and formulations on nematocyst discharge, we performed three tests: (1) screening of per se discharge activator solutions, (2) inhibitory test with nematocyst chemical stimulation (5% acetic acid) and (3) inhibitory test quantifying the hemolytic area. Ammonia, barium chloride, bleach, scented ammonia, carbonated cola, lemon juice, sodium chloride and papain triggered nematocyst discharge. All of them were ruled out as potential inhibitors. Butylene glycol showed a reduction in nematocyst discharge, while the formulations of 10% lidocaine in ethanol, 1.5% hydroxyacetophenone in distilled water + butylene glycol, and 3% Symsitive® in butylene glycol inhibited nematocyst discharge. These last results were subsequently correlated with a significant decrease in hemolytic area in the venom assays versus seawater, a neutral solution. The presented data represent a first step in research to develop preventive products for jellyfish stings while at the same time attempting to clarify some uncertainties about the role of various topical solutions in P. noctiluca first-aid protocols.


Assuntos
Mordeduras e Picadas , Cnidários , Venenos de Cnidários , Cifozoários , Amônia/análise , Amônia/farmacologia , Animais , Mordeduras e Picadas/prevenção & controle , Butileno Glicóis/análise , Butileno Glicóis/farmacologia , Venenos de Cnidários/análise , Venenos de Cnidários/farmacologia , Etanol/farmacologia , Hemólise , Lidocaína/farmacologia , Nematocisto/química , Papaína/farmacologia , Cifozoários/química , Cloreto de Sódio/farmacologia , Água
12.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682678

RESUMO

The sesquiterpenoid hormone juvenile hormone (JH) controls development, reproduction, and metamorphosis in insects, and has long been thought to be confined to the Insecta. While it remains true that juvenile hormone is specifically synthesized in insects, other types or forms of sesquiterpenoids have also been discovered in distantly related animals, such as the jellyfish. Here, we combine the latest literature and annotate the sesquiterpenoid biosynthetic pathway genes in different animal genomes. We hypothesize that the sesquiterpenoid hormonal system is an ancestral system established in an animal ancestor and remains widespread in many animals. Different animal lineages have adapted different enzymatic routes from a common pathway, with cnidarians producing farnesoic acid (FA); non-insect protostomes and non-vertebrate deuterostomes such as cephalochordate and echinoderm synthesizing FA and methyl farnesoate (MF); and insects producing FA, MF, and JH. Our hypothesis revolutionizes the current view on the sesquiterpenoids in the metazoans, and forms a foundation for a re-investigation of the roles of this important and yet neglected type of hormone in different animals.


Assuntos
Hormônios Juvenis , Sesquiterpenos , Animais , Vias Biossintéticas , Insetos/metabolismo , Hormônios Juvenis/metabolismo , Metamorfose Biológica , Sesquiterpenos/metabolismo
13.
Dev Biol ; 468(1-2): 59-79, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976840

RESUMO

The cnidarian "planula" larva shows radial symmetry around a polarized, oral-aboral, body axis and comprises two epithelia cell layers, ectodermal and endodermal. This simple body plan is set up during gastrulation, a process which proceeds by a variety of modes amongst the diverse cnidarian species. In the hydrozoan laboratory model Clytia hemisphaerica, gastrulation involves a process termed unipolar cell ingression, in which the endoderm derives from mass ingression of individual cells via a process of epithelial-mesenchymal transition (EMT) around the future oral pole of an epithelial embryo. This contrasts markedly from the gastrulation mode in the anthozoan cnidarian Nematostella vectensis, in which endoderm formation primarily relies on cell sheet invagination. To understand the cellular basis of gastrulation in Clytia we have characterized in detail successive cell morphology changes during planula formation by Scanning and Transmission Electron Microscopy combined with confocal imaging. These changes successively accompany epithelialization of the blastoderm, EMT occurring in the oral domain through the bottle cell formation and ingression, cohesive migration and intercalation of ingressed cells with mesenchymal morphology, and their epithelialization to form the endoderm. From our data, we have reconstructed the cascade of morphogenetic events leading to the formation of planula larva. We also matched the domains of cell morphology changes to the expression of selected regulatory and marker genes expressed during gastrulation. We propose that cell ingression in Clytia not only provides the endoderm, but generates internal forces that shape the embryo in the course of gastrulation. These observations help build a more complete understanding of the cellular basis of morphogenesis and of the evolutionary plasticity of cnidarian gastrulation modes.


Assuntos
Padronização Corporal/fisiologia , Embrião não Mamífero/embriologia , Hidrozoários/embriologia , Animais , Larva
14.
Development ; 145(10)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29739837

RESUMO

For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.


Assuntos
Bases de Dados Genéticas , Desenvolvimento Embrionário/genética , Regeneração/genética , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Animais , Perfilação da Expressão Gênica , Transcriptoma/genética
15.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299075

RESUMO

Organisms' survival is associated with the ability to respond to natural or anthropogenic environmental stressors. Frequently, these responses involve changes in gene regulation and expression, consequently altering physiology, development, or behavior. Here, we present modifications in response to heat exposure that mimics extreme summertime field conditions of lab-cultured and field-conditioned Nematostella vectensis. Using ATAC-seq and RNA-seq data, we found that field-conditioned animals had a more concentrated reaction to short-term thermal stress, expressed as enrichment of the DNA repair mechanism pathway. By contrast, lab animals had a more diffuse reaction that involved a larger number of differentially expressed genes and enriched pathways, including amino acid metabolism. Our results demonstrate that pre-conditioning affects the ability to respond efficiently to heat exposure in terms of both chromatin accessibility and gene expression and reinforces the importance of experimentally addressing ecological questions in the field.


Assuntos
Cromatina/fisiologia , Regulação da Expressão Gênica , Temperatura Alta , Laboratórios/estatística & dados numéricos , Anêmonas-do-Mar/genética , Transcriptoma , Animais , Monitoramento Ambiental , Perfilação da Expressão Gênica , Anêmonas-do-Mar/crescimento & desenvolvimento
16.
Zoo Biol ; 40(5): 472-478, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34124804

RESUMO

Magnesium is involved in a variety of physiological processes in marine animals and is known to be deleterious in both excess and deficiency. The effects of magnesium concentration ranging from 700 mg/L (low), 1344 mg/L (control), and 2000 mg/L (high) on size and pulse rate in upside-down jellyfish (Cassiopea andromeda) medusae were examined in two separate 28-day trials. Exposure to low magnesium resulted in significantly (p < .05) higher pulse rates and decreased bell diameter and also produced oral arm degradation. Exposure to high magnesium resulted in significantly (p < .05) lower pulse rates and decreased bell diameter as well as oral arm cupping. In both low and high magnesium, almost all specimens changed color from pale blue on Day 1, to brown by Day 28, suggesting a loss of zooxanthellae. The decrease in bell diameter and color change was more pronounced and occurred more rapidly in low magnesium. The results of both trials demonstrate the deleterious effects of high and low magnesium on C. andromeda and emphasize the importance of monitoring magnesium concentration to maintain healthy display animals in public aquaria.


Assuntos
Magnésio , Cifozoários , Animais , Animais de Zoológico , Frequência Cardíaca
17.
Development ; 144(16): 2951-2960, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705897

RESUMO

The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensisNvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis.


Assuntos
Endoderma/embriologia , Faringe/embriologia , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/metabolismo , Animais , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Imuno-Histoquímica , Hibridização In Situ , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
J Exp Biol ; 223(Pt 21)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968001

RESUMO

The centralized nervous systems of bilaterian animals rely on directional signaling facilitated by polarized neurons with specialized axons and dendrites. It is not known whether axo-dendritic polarity is exclusive to bilaterians or was already present in early metazoans. We therefore examined neurite polarity in the starlet sea anemone Nematostella vectensis (Cnidaria). Cnidarians form a sister clade to bilaterians and share many neuronal building blocks characteristic of bilaterians, including channels, receptors and synaptic proteins, but their nervous systems comprise a comparatively simple net distributed throughout the body. We developed a tool kit of fluorescent polarity markers for live imaging analysis of polarity in an identified neuron type, large ganglion cells of the body column nerve net that express the LWamide-like neuropeptide. Microtubule polarity differs in bilaterian axons and dendrites, and this in part underlies polarized distribution of cargo to the two types of processes. However, in LWamide-like+ neurons, all neurites had axon-like microtubule polarity suggesting that they may have similar contents. Indeed, presynaptic and postsynaptic markers trafficked to all neurites and accumulated at varicosities where neurites from different neurons often crossed, suggesting the presence of bidirectional synaptic contacts. Furthermore, we could not identify a diffusion barrier in the plasma membrane of any of the neurites like the axon initial segment barrier that separates the axonal and somatodendritic compartments in bilaterian neurons. We conclude that at least one type of neuron in Nematostella vectensis lacks the axo-dendritic polarity characteristic of bilaterian neurons.


Assuntos
Anêmonas-do-Mar , Animais , Axônios , Citoesqueleto , Microtúbulos , Neurônios
19.
J Exp Biol ; 223(Pt 13)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32487669

RESUMO

Carbonic anhydrases (CA; EC 4.2.1.1) play a vital role in dissolved inorganic carbon (DIC) transport to photosynthetic microalgae residing in symbiotic cnidarians. The temperate sea anemone Anthopleura elegantissima can occur in three symbiotic states: hosting Breviolum muscatinei (brown), hosting Elliptochloris marina (green) or without algal symbionts (aposymbiotic). This provides a basis for A. elegantissima to be a model for detailed studies of the role of CA in DIC transport. This study investigated the effects of symbiosis, body size and light on CA activity and expression, and suggests that A. elegantissima has a heterotrophy-dominated trophic strategy. We identified putative A. elegantissima CA genes and performed phylogenetic analyses to infer subcellular localization in anemones. We performed experiments on field-collected anemones to compare: (1) CA activity and expression from anemones in different symbiotic states, (2) CA activity in brown anemones as a function of size, and (3) CA activity in anemones of different symbiotic states that were exposed to different light intensities. CA activity in brown anemones was highest, whereas activity in green and aposymbiotic anemones was low. Several CAs had expression patterns that mirrored activity, while another had expression that was inversely correlated with activity, suggesting that symbionts may induce different DIC transport pathways. Finally, CA activity was inversely correlated with anemone size. Our results suggest that the observed CA activity and expression patterns are affected not only by symbiosis, but also by other factors in the host physiology, including trophic strategy as it relates to body size and cellular pH homeostasis.


Assuntos
Anidrases Carbônicas , Dinoflagellida , Anêmonas-do-Mar , Animais , Anidrases Carbônicas/genética , Filogenia , Anêmonas-do-Mar/genética , Simbiose
20.
Proc Natl Acad Sci U S A ; 114(50): 13194-13199, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29158383

RESUMO

The relationship between corals and dinoflagellates of the genus Symbiodinium is fundamental to the functioning of coral ecosystems. It has been suggested that reef corals may adapt to climate change by changing their dominant symbiont type to a more thermally tolerant one, although the capacity for such a shift is potentially hindered by the compatibility of different host-symbiont pairings. Here we combined transcriptomic and metabolomic analyses to characterize the molecular, cellular, and physiological processes that underlie this compatibility, with a particular focus on Symbiodinium trenchii, an opportunistic, thermally tolerant symbiont that flourishes in coral tissues after bleaching events. Symbiont-free individuals of the sea anemone Exaiptasia pallida (commonly referred to as Aiptasia), an established model system for the study of the cnidarian-dinoflagellate symbiosis, were colonized with the "normal" (homologous) symbiont Symbiodinium minutum and the heterologous S. trenchii Analysis of the host gene and metabolite expression profiles revealed that heterologous symbionts induced an expression pattern intermediate between the typical symbiotic state and the aposymbiotic state. Furthermore, integrated pathway analysis revealed that increased catabolism of fixed carbon stores, metabolic signaling, and immune processes occurred in response to the heterologous symbiont type. Our data suggest that both nutritional provisioning and the immune response induced by the foreign "invader" are important factors in determining the capacity of corals to adapt to climate change through the establishment of novel symbioses.


Assuntos
Dinoflagellida/genética , Anêmonas-do-Mar/genética , Simbiose/genética , Animais , Recifes de Corais , Dinoflagellida/metabolismo , Dinoflagellida/fisiologia , Metaboloma , Estresse Oxidativo , Anêmonas-do-Mar/metabolismo , Anêmonas-do-Mar/fisiologia , Simbiose/imunologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA