Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(5): 2241-2262, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35918576

RESUMO

Chromium (Cr), one of the prime hazardous trace elements in coals, may engender adverse effects on eco-environment and threaten human health during utilization of coal. Based on the samples obtained in our laboratory and published literature, the abundance and modes of occurrence of Cr in Chinese coals, and the environmental impacts associated with coal-fired power plants (CFPPs) were elucidated in this study. With a total of 1397 sets of data, the mean concentration of Cr in Chinese coals was calculated as 21.33 µg/g by the "reserve-concentration" weighted calculation method. Spatially, the average Cr contents increased gradually from North China to South China. Temporally, coals from T3, E-N and P2 were relatively enriched in Cr compared to the other geological time. The Cr concentration in coal varied with different coal ranks. The geological factors accounted for Cr enrichment in coals could be divided into the primary, secondary and epigenetic processes. Higher percentages of organically Cr occurred in low-rank coals, while inorganically associated Cr was mainly found in clay minerals. After coal combustion, most of Cr was enriched in solid wastes (e.g., fly ash and bottom ash). The leaching of Cr from solid wastes in the rainy season (especially acid rain) needs to be a concern for CFPPs. It was estimated that the atmospheric emission of Cr from CFPPs increased annually from 2015 to 2019 and reached approximately 159 tons in 2019.


Assuntos
Cromo , Carvão Mineral , China , Cromo/toxicidade , Carvão Mineral/análise , Cinza de Carvão/análise , Centrais Elétricas , Resíduos Sólidos
2.
Environ Res ; 214(Pt 3): 114005, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944620

RESUMO

BACKGROUND: When coal is burned for energy, coal ash, a hazardous waste product, is generated. Throughout the world, over 1 billion tons of coal ash is produced yearly. In the United States, over 78 million tons of coal ash was produced in 2019. Fly ash, the main component of coal ash contains neurotoxic metal (loid)s that may affect children's neurodevelopment and mental health. The objective of this study was to investigate the association between fly ash and depressive problems in children aged 6-14 years old. METHODS: Children and their parents/guardians were recruited from 2015 to 2020. Tobit regression and logistic regression were used to assess the association between coal fly ash and depressive problems. To determine fly ash presence, Scanning Electron Microscopy was conducted on polycarbonate filters containing PM10 from the homes of the study participants. Depressive problems in children were measured using the Depressive Problems DSM and withdrawn/depressed syndromic problem scales of the Child Behavior Checklist. RESULTS: In covariate-adjusted Tobit regression models, children with fly ash on the filter had higher scores on the DSM Depressive Problems (3.13 points; 95% CI = 0.39, 5.88) compared with children who did not have fly ash on the filter. Logistic regression supported these findings. CONCLUSION: Coal ash is one of the largest waste streams in the U.S, but it is not classified as a hazardous waste by the Environmental Protection Agency. To our knowledge, no studies have assessed the impact of coal ash on children's mental health. This study highlights the need for further research into the effects of coal ash exposure on children's mental health, and improved regulations on release and storage of coal ash.


Assuntos
Cinza de Carvão , Depressão , Carvão Mineral , Cinza de Carvão/toxicidade , Depressão/induzido quimicamente , Depressão/epidemiologia , Resíduos Perigosos , Humanos , Centrais Elétricas
3.
J Environ Manage ; 320: 115800, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933877

RESUMO

This paper presents a CFD modeling of deNOx process in a coal-fired power plant selective catalytic reduction (SCR) system, with focus on the transient hydrodynamics of multi-species flow and the influence of vortex on the deNOx process. For this purpose, a comprehensive CFD model is established, parameter study and model validation are performed, and the hydrodynamics, vortex evolution and species concentration distribution are numerically investigated. Simulation results indicate that many vortices with various scale/intensity/shape exist in the SCR system, causing apparent pressure pulsations and velocity fluctuations. High-intensity eddies are mainly distributed in the deflector group Ι, the NH3 nozzles, the static mixer, and the right part of the rectifying grille. The number of eddies decreases significantly with reducing the unit loads. Affected by vortex evolution, the NH3 concentration fluctuates in the SCR system, especially in the vertical flue. The deNOx process completes within 6 s, and the ammonia slip is less than 1.0 ppm, which well meets the requirement of industrial standards. In addition, the static mixer severely destroys the velocity uniformity but favors the mixing of NH3 and NOx. The rectifying grille improves the uniformity of flow field and species concentration field significantly.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Poluentes Atmosféricos/análise , Catálise , Hidrodinâmica , Centrais Elétricas
4.
Environ Sci Technol ; 55(13): 9074-9086, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132542

RESUMO

Children who live near coal-fired power plants are exposed to coal fly ash, which is stored in landfills and surface impoundments near residential communities. Fly ash has the potential to be released as fugitive dust. Using data collected from 263 children living within 10 miles of coal ash storage facilities in Jefferson and Bullitt Counties, Kentucky, USA, we quantified the elements found in nail samples. Furthermore, using principal component analysis (PCA), we investigated whether metal(loid)s that are predominately found in fly ash loaded together to indicate potential exposure to fly ash. Concentrations of several neurotoxic metal(loid)s, such as chromium, manganese, and zinc, were higher than concentrations reported in other studies of both healthy and environmentally exposed children. From PCA, it was determined that iron, aluminum, and silicon in fly ash were found to load together in the nails of children living near coal ash storage facilities. These metal(loid)s were also highly correlated with each other. Last, results of geospatial analyses partially validated our hypothesis that children's proximity to power plants was associated with elevated levels of concentrations of fly ash metal(loid)s in nails. Taken together, nail samples may be a powerful tool in detecting exposure to fly ash.


Assuntos
Cinza de Carvão , Centrais Elétricas , Criança , Carvão Mineral , Cinza de Carvão/análise , Poeira/análise , Humanos , Metais
5.
Environ Sci Technol ; 55(19): 13164-13173, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34549588

RESUMO

Carbon capture, utilization, and storage (CCUS) is a critical technology to realize carbon neutrality target in the Chinese coal-fired power sector, which emitted 3.7 billion tonnes of carbon dioxide in 2017. However, CCUS technology is often viewed as an "alternative technology" option owing to common perceptions of relatively high cost and potential risks. This study indicates that coal power CCUS is likely to be a cost-effective and key technology for helping China reach the ambitious goal of carbon neutrality. This comprehensive, national-scale assessment of CCUS deployment on coal power in China is based on a unique bottom-up approach that includes site selection, coal plant screening, techno-economic analysis, and carbon dioxide source-sink matching. Analysis indicates that, based on 2017 costs and assumptions, more than 70% of coal power plants in this study could be cost-competitive with natural gas-fired power plants, and 22-58% would be cost-competitive with onshore wind generation. These insights suggest that the commercialization of CCUS technology in the coal power sector in China is a viable route toward decarbonizing the economy if a grid price policy similar to that of renewables and natural gas power is applied.


Assuntos
Carvão Mineral , Centrais Elétricas , Dióxido de Carbono/análise , Sequestro de Carbono , China , Carvão Mineral/análise , Tecnologia
6.
Environ Health ; 19(1): 28, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126999

RESUMO

BACKGROUND: Evidence of causal relationship between mortality of older adults and low- concentration PM2.5 remains limited. OBJECTIVES: This study investigates the effects of low-concentration PM2.5 on the mortality of adults older than 65 using the closure of coal-fired power plants in the Eastern United States as a natural experiment. METHODS: We investigated power plants in the Eastern United States (US) that had production changes through unit shutdown or plant retirement between 1999 and 2013. We included only non-clustered power plants without scrubbers and with capacities greater than 50 MW. We used instrumental variable (IV) and difference-in-differences (DID) approaches to estimate the causal impact of PM2.5 concentrations on mortality among Medicare beneficiaries. We compared changes in monthly age-adjusted mortality before and after the retirement of coal-fired plants between the treated and control counties; we accounted for annual wind direction in our selection of treated and control counties. In the models, we initially included only county and monthly fixed effects, and then adjusted for covariates including: 1) only weather variables (temperature, dew point, pressure); and 2) weather variables and socio-economic variables (median household income and poverty rate). RESULTS: The monthly age-adjusted mortality rate averaged across all plants was approximately 423 per 100,000 (SD = 69) and was higher for males than females. Mean PM2.5 concentrations across all counties were 12 µg/m3 (SD = 3.78). Using the IV method, we found that reductions in PM2.5 concentrations significantly decreased monthly mortality among older adults. IV results show that a 1-µg/m3 reduction in PM2.5 concentrations leads to 7.17 fewer deaths per 100,000 per month, or a 1.7% lower monthly mortality rate among people older than 65 years. Using the DID approach, we found that power plant retirement significantly decreased: 1) monthly PM2.5 levels by 2.1 µg/m3, and 2) monthly age-adjusted mortality by approximately 15 people per 100,000 (or 3.6%) in treated counties relative to control counties. The mortality effects were higher among males than females and its impact was the greatest among people older than 75 years. CONCLUSION: These findings provide evidence of the effectiveness of local, plant-level control measures in reducing near-plant PM2.5 and mortality among U.S. Medicare beneficiaries.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Carvão Mineral , Exposição Ambiental/efeitos adversos , Mortalidade/tendências , Material Particulado/efeitos adversos , Centrais Elétricas , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Feminino , Georgia/epidemiologia , Humanos , Masculino , North Carolina/epidemiologia , Ohio/epidemiologia , Tamanho da Partícula , Medição de Risco , Tennessee/epidemiologia
7.
Proc Natl Acad Sci U S A ; 114(8): 1862-1867, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167772

RESUMO

Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

8.
J Environ Sci (China) ; 93: 66-90, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32446461

RESUMO

China's energy dependents on coal due to the abundance and low cost of coal. Coal provides a secure and stable energy source in China. Over-dependence on coal results in the emission of Hazardous Trace Elements (HTEs) including selenium (Se), mercury (Hg), lead (Pb), arsenic (As), etc., from Coal-Fired Power Plants (CFPPs), which are the major toxic air pollutants causing widespread concern. For this reason, it is essential to provide a succinct analysis of the main HTEs emission control techniques while concurrently identifying the research prospects framework and specifying future research directions. The study herein reviews various techniques applied in China for the selected HTEs emission control, including the technical, institutional, policy, and regulatory aspects. The specific areas covered in this study include health effects, future coal production and consumption, the current situation of HTEs in Chinese coal, the chemistry of selected HTEs, control techniques, policies, and action plans safeguarding the emission control. The review emphasizes the fact that China must establish and promote efficient and clean ways to utilize coal in order to realize sustainable development. The principal conclusion is that cleaning coal technologies and fuel substitution should be great potential HTEs control technologies in China. Future research should focus on the simultaneous removal of HTEs, PM, SOx, and NOx in the complex flue gas.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Oligoelementos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Centrais Elétricas
9.
Environ Health ; 18(1): 9, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691464

RESUMO

BACKGROUND: Exposure to ambient particulate matter generated from coal-fired power plants induces long-term health consequences. However, epidemiologic studies have not yet focused on attributing these health burdens specifically to energy consumption, impeding targeted intervention policies. We hypothesize that the generating capacity of coal-fired power plants may be associated with lung cancer incidence at the national level. METHODS: Age- and sex-adjusted lung cancer incidence from every country with electrical plants using coal as primary energy supply were followed from 2000 to 2016. We applied a Poisson regression longitudinal model, fitted using generalized estimating equations, to estimate the association between lung cancer incidence and per capita coal capacity, adjusting for various behavioral and demographic determinants and lag periods. RESULTS: The average coal capacity increased by 1.43 times from 16.01 gigawatts (GW) (2000~2004) to 22.82 GW (2010~2016). With 1 kW (KW) increase of coal capacity per person in a country, the relative risk of lung cancer increases by a factor of 59% (95% CI = 7.0%~ 135%) among males and 85% (95% CI = 22%~ 182%) among females. Based on the model, we estimate a total of 1.37 (range = 1.34 ~ 1.40) million standardized incident cases from lung cancer will be associated with coal-fired power plants in 2025. CONCLUSIONS: These analyses suggest an association between lung cancer incidence and increased reliance on coal for energy generation. Such data may be helpful in addressing a key policy question about the externality costs and estimates of the global disease burden from preventable lung cancer attributable to coal-fired power plants at the national level.


Assuntos
Carvão Mineral , Neoplasias Pulmonares/epidemiologia , Centrais Elétricas , Feminino , Saúde Global , Humanos , Incidência , Masculino , Risco
10.
Bull Environ Contam Toxicol ; 103(2): 286-291, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31190164

RESUMO

Concentrations of heavy metals in bottom sediments of Lake Kenon in descending order are distributed as follows: Mn > Zn > Pb > Mo > Cd. Spatial distribution of metals in bottom sediments of Lake Kenon depends on composition of bottom deposits (sands in shallow water and sapropel silt in the deep part), location of contamination sources (thermal power station, residential area), as well as density and duration of growth of aquatic plants. The greatest pollution of bottom sediments was observed in the area of TPP-1. Due to the intense and all-year-round process of aquatic vegetation growth in the area of TPP-1 contaminants are being accumulated in the bottom sediments of this part of the lake. However, plants that absorb metals in excess amounts and are passively moved by currents through of the system become a source of contamination of bottom sediments in relatively clean parts of the water reservoirs.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lagos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Organismos Aquáticos/efeitos dos fármacos , Plantas/efeitos dos fármacos , Federação Russa
11.
J Law Med ; 26(2): 480-487, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30574731

RESUMO

This article explores the benefits likely to arise from Australia's ratification of the Minamata Convention on Mercury with regard to reducing public health risks from mercury emissions from coal-fired power plants. The current legislative frameworks regulating mercury pollution are critiqued, an exploration of the international approaches is undertaken, and recommendations are made aiming to produce a stronger, more stringent and long-term mercury protection policy for Australian communities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/legislação & jurisprudência , Política Ambiental/legislação & jurisprudência , Mercúrio , Centrais Elétricas/legislação & jurisprudência , Austrália , Carvão Mineral , Centrais Elétricas/estatística & dados numéricos , Saúde Pública
12.
Entropy (Basel) ; 20(2)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33265180

RESUMO

To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC), in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW), which is much larger than that of the system with only ORC (6.49 MW). This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C) heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years). However, by coupling both concepts, a net power output of 26.51 MW and a payback time of almost one year are achieved, which may promote the large-scale production and deployment of ORC with a cost reduction and competitiveness enhancement.

13.
J Environ Sci (China) ; 33: 125-34, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26141885

RESUMO

Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/economia , Poluição do Ar/prevenção & controle , Carvão Mineral , Mercúrio/química , Centrais Elétricas , China , Análise Custo-Benefício
14.
Environ Pollut ; 360: 124716, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142431

RESUMO

In this study, the concentration of inorganic ions (SO42-, NH4+, NO3- and NO2-) and morphological characteristics of condensable particulate matter (CPM) were investigated to elucidate the formation mechanism of inorganic CPM from ultra-low emission coal-fired power plants. The concentration of inorganic ions increased with the increase of H2O content and concentration of inorganic gaseous contaminants (SO2, NOX and NH3), and decrease of condensation temperature, indicating the enhancement of heterogenous reaction in the saturated flue gas. Furthermore, NOX and SO2 could undergo redox reactions, leading to an elevation in the concentration of SO42- and NO3-. Additionally, the introduction of NH3 resulted in increased concentrations of SO42-, NO3-, and NO2-, highlighting the significant role of NH3 neutralization in CPM nucleation. The condensation of SO3/sulfuric acid aerosols was enhanced under saturation conditions, and SO2 and SO3/sulfuric acid aerosols could contribute synergistically to the formation of SO42-. Moreover, morphological analysis revealed the presence of both well-aggregated solid CPM and dispersed liquid CPM, confirming the formation of inorganic CPM during fast condensation. Furthermore, the detected CPM were composed of S and O, which identified the significant role of sulfates in the inorganic CPM. These findings provide valuable insights for the control of inorganic CPM in flue gas systems.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Material Particulado , Centrais Elétricas , Material Particulado/análise , Poluentes Atmosféricos/análise , Dióxido de Enxofre , Monitoramento Ambiental/métodos , Aerossóis , Sulfatos
15.
Environ Sci Pollut Res Int ; 31(13): 19148-19165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379043

RESUMO

Coal-fired power plants (CFPPs) are one of the most significant sources of mercury (Hg) emissions certified by the Minamata Convention, which has attracted much attention in recent years. In this study, we used the Web of Science and CiteSpace to analyze the knowledge structure of this field from 2000 to 2022 and then reviewed it systematically. The field of Hg emissions from coal-fired power plants has developed steadily. The research hotspots can be divided into three categories: (1) emission characterization research focused on speciation changes and emission calculations; (2) emission control research focused on control technologies; (3) environmental impact research focused on environmental pollution and health risk. In conclusion, using an oxygen-rich atmosphere for combustion and installing high-efficiency air pollution control devices (APCDs) helped to reduce the formation of Hg0. The average Hg removal rates of APCDs and modified adsorbents after ultra-low emission retrofit were distributed in the range of 82-93% and 41-100%, respectively. The risk level of Hg in combustion by-products was highest in desulfurization sludge (RAC > 10%) followed by fly ash (10% < RAC < 30%) and desulfurization gypsum (1% < RAC < 10%). Additionally, we found that the implementation of pollution and carbon reduction policies in China had reduced Hg emissions from CFPPs by 45% from 2007 to 2015, increased the efficiency of Hg removal from APCDs to a maximum of 96%, and reduced global transport and health risk of atmospheric Hg. The results conjunctively achieved by CiteSpace, and the literature review will enhance understanding of CFPP Hg emission research and provide new perspectives for future research.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Mercúrio , Centrais Elétricas , Mercúrio/análise , Poluentes Atmosféricos/análise , Bibliometria , Poluição do Ar , Poluição Ambiental , Monitoramento Ambiental , China
16.
Ambio ; 52(1): 242-252, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35997988

RESUMO

Coal combustion is the largest source of power in India at the moment. This combustion also emits trace amounts of hazardous substances such as mercury. Mercury is a global pollutant with the potential for long-range transport and ability to persist in the environment, bioaccumulate and cause toxicity. Controlling emissions of mercury from coal-fired power plants (CFPPs) is recognized by the Minamata Convention on Mercury as an important step in curbing the harmful effects of mercury to the environment and humans. India has been identified as one of the top emitters of mercury to the atmosphere, and coal combustion contributes to more than half of these emissions. Here, we discuss the current state of regulations on mercury emissions from CFPPs in India, the current information on mercury from CFPP stacks, and the possible way forward. Present data suggest that mercury specific emission control technologies are not required to comply with the regulatory requirements. As such, any reduction in mercury emissions will rely on co-benefits obtained from technologies to control emissions of other pollutants such as flue gas desulphurization, or methods to increase the efficiencies of CFPP such as coal washing. Additional reductions may be made from a business-as-usual scenario if the energy mix of India changes to renewable non-fossil fuel-based energy at an accelerated pace. Quantitative studies assessing the role of such climate change policies on mercury emissions reduction are recommended.


Assuntos
Poluentes Atmosféricos , Mercúrio , Humanos , Mercúrio/análise , Poluentes Atmosféricos/análise , Centrais Elétricas , Carvão Mineral/análise , Índia
17.
Chemosphere ; 318: 137934, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702403

RESUMO

In this work, condensation temperature, H2O vapor, SO2, SO3 and NH3 were studied to explore the formation mechanism of nitrate ions (NO3-) and nitrite ions (NO2-) in condensable particulate matter (CPM) discharged by ultra-low emission coal-fired power plants. Some important results were obtained: (i) The concentration of NO3- and NO2- increased with the decrease of condensation temperature, and H2O vapor could also promote the formation of NO3- and NO2-. (ii) The effects of SO2 and SO3 varied at different saturated states of flue gas, which was caused by the redox reaction of SO2 and NOX or the formation of H2SO4. (iii) NH3 could promote the nucleation of NO3- and NO2-, and the promotion effect also existed in the existence of SO2 or SO3. It is worth mentioning that SO3 and SO2 might synergistically inhibit the formation of NO3- and NO2-, regardless of the presence of NH3. The research results would enrich peoples understanding of the chemical and physical characteristics of NO3- and NO2- in CPM and provide a basic reference for the control of CPM emitted from coal-fired power plants.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Nitratos , Nitritos , Dióxido de Nitrogênio , Carvão Mineral , Gases , Centrais Elétricas
18.
Sci Total Environ ; 869: 161817, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708842

RESUMO

The emission and environmental impact of condensable particulate matter (CPM) from coal-fired power plants (CFPPs) are of increasing concern worldwide. Many studies on the characteristics of CPM emission have been conducted in China, but its source profile remains unclear, and its emission inventory remains high uncertainty. In this work, the latest measurements reported in the latest 33 studies for CPM inorganic and organic species emitted from CFPPs in China were summarized, and then a compositional source profile of CPM for CFPPs was developed for the first time in China, which involved 10 inorganic species and 71 organic species. In addition, the CPM emission inventory of CFPPs in Yantai of China was developed based on surveyed activity data, continuous emission monitoring system (CEMS), and the latest measurement data. The results show that: (1) Inorganic species accounted for 77.64 % of CPM emitted from CFPPs in Yantai, among which SO42- had the highest content, accounting for 23.74 % of CPM, followed by Cl-, accounting for 11.95 %; (2) Organic matter accounted for 22.36 % of CPM, among which alkanes accounted for the largest proportion of organic fraction (72.7 %); (3) Emission concentration method (EC) and CEMS-based emission ratio method (ERFPM,CEMS) were recommended to estimate CPM emissions for CFPPs; (4) The estimated CPM emission inventories of Yantai CFPPs in 2020 by the EC method and the ERFPM,CEMS method were 1231 tons and 929 tons, respectively, with uncertainties of -34 % ∼ 33 % and -27 % ∼ 57 %, respectively; (5) CPM emissions were mainly distributed in the northern coastal areas of Yantai. This developed CPM source profile and emission inventory can provide basic data for assessing the impacts of CPM on air quality and health. In addition, this study can provide an important methodology for developing CPM emission inventories and CPM emission source profiles for stationary combustion sources in other regions.

19.
Environ Pollut ; 318: 120944, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584857

RESUMO

The objective of this study was to examine the physicochemical characteristics of polycyclic aromatic hydrocarbons (PAHs) in condensable particulate matter (CPM) during fast condensation (within several seconds). The concentration of PAHs increased as the condensation temperature decreased, indicating that the conversion of gaseous PAHs to CPM would be enhanced at low temperatures. PAH concentrations increased in relation to the number of rings in the fragment, with the high-ring (4-,5- and 6-ring) PAHs accounting for 89.70-92.30% and 99.78-99.80% of the total concentration and total toxic equivalent of PAHs. In addition, particulate-phase PAHs (0.1-1.0 µm), developed through the synergistic effect of PAHs and fine particles, were difficult to collect by fast condensation. Inorganic fine particles could be formed when ammonia-rich conditions prevail, reducing PAH condensation further. Furthermore, CPM was morphologically and chemically characterized. During the experiment, fine and well-aggregated CPMs were detected on the membrane, and the diameter of CPMs was further enhanced by the addition of 16 PAHs. Most of the C element was collected in the rinse fluid, thus indicating that PAHs in CPM were collected through condensation. Based on these findings, basic guidelines can be provided for the control of PAHs in flue gas from coal-fired power plants.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Centrais Elétricas , Gases , Carvão Mineral/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
20.
Artigo em Inglês | MEDLINE | ID: mdl-36767540

RESUMO

The Fenwei Plain (FWP) remains one of the worst PM2.5-polluted regions in China, although its air quality has improved in recent years. To evaluate the regional transport characteristics of PM2.5 emitted by coal-fired power plants in the FWP in wintertime, the primary PM2.5, SO2, and NOx emissions from coal-fired power plants with large units (≥300 MW) in 11 cities of the area in January 2019 were collected based on the Continuous Emission Monitoring System (CEMS). The spatial distribution and source contribution of primary and secondary PM2.5 concentrations were investigated using the Weather Research and Forecast (WRF) model and the California Puff (CALPUFF) model. The results showed that secondary PM2.5 was transported over a larger range than primary PM2.5 and that secondary nitrate was the main component of the total PM2.5 concentration, accounting for more than 70%. High concentrations of primary, secondary, and total PM2.5 mainly occurred in the Shaanxi region of the FWP, especially in Xianyang, where the PM2.5 concentrations were the highest among the 11 cities, even though its pollutant emissions were at moderate levels. The PM2.5 concentrations in Sanmenxia and Yuncheng primarily came from regional transport, accounting for 64% and 68%, respectively, while those in other cities were dominated by local emissions, accounting for more than 63%. The results may help to understand the regional transport characteristics of pollutants emitted from elevated point sources over a complex terrain.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Material Particulado/análise , Carvão Mineral , Monitoramento Ambiental/métodos , China , Cidades , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA