Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 185(6): 980-994.e15, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303428

RESUMO

The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Clostridioides difficile/genética , Lipoproteínas/genética
2.
Immunity ; 55(3): 494-511.e11, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263568

RESUMO

Interleukin (IL)-22 is central to immune defense at barrier sites. We examined the contributions of innate lymphoid cell (ILC) and T cell-derived IL-22 during Citrobacter rodentium (C.r) infection using mice that both report Il22 expression and allow lineage-specific deletion. ILC-derived IL-22 activated STAT3 in C.r-colonized surface intestinal epithelial cells (IECs) but only temporally restrained bacterial growth. T cell-derived IL-22 induced a more robust and extensive activation of STAT3 in IECs, including IECs lining colonic crypts, and T cell-specific deficiency of IL-22 led to pathogen invasion of the crypts and increased mortality. This reflected a requirement for T cell-derived IL-22 for the expression of a host-protective transcriptomic program that included AMPs, neutrophil-recruiting chemokines, and mucin-related molecules, and it restricted IFNγ-induced proinflammatory genes. Our findings demonstrate spatiotemporal differences in the production and action of IL-22 by ILCs and T cells during infection and reveal an indispensable role for IL-22-producing T cells in the protection of the intestinal crypts.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Animais , Antibacterianos , Imunidade Inata , Interleucinas/metabolismo , Mucosa Intestinal , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo , Interleucina 22
3.
J Math Biol ; 76(7): 1797-1830, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29302705

RESUMO

Stem cell renewal and differentiation in the human colonic crypt are linked to the [Formula: see text]-catenin pathway. The spatial balance of Wnt factors in proliferative cells within the crypt maintain an appropriate level of cellular reproduction needed for normal crypt homeostasis. Mutational events at the gene level are responsible for deregulating the balance of Wnt factors along the crypt, causing an overpopulation of proliferative cells, a loss of structure of the crypt domain, and the initiation of colorectal carcinomas. We formulate a PDE model describing cell movement and reproduction in a static crypt domain. We consider a single cell population whose proliferative capabilities are determined by stemness, a quantity defined by intracellular levels of adenomatous polyposis coli (APC) scaffold protein and [Formula: see text]-catenin. We fit APC regulation parameters to biological data that describe normal protein gradients in the crypt. We also fit cell movement and protein flux parameters to normal crypt characteristics such as renewal time, total cell count, and proportion of proliferating cells. The model is used to investigate abnormal crypt dynamics when subjected to a diminished APC gradient, a scenario synonymous to mutations in the APC gene. We find that a 25% decrease in APC synthesis leads to a fraction of 0.88 proliferative, which is reflective of normal-appearing FAP crypts. A 50% drop in APC activity yields a fully proliferative crypt showing a doubling of the level of stemness, which characterizes the initial stages of colorectal cancer development. A sensitivity analysis of APC regulation parameters shows the perturbation of factors that is required to restore crypt dynamics to normal in the case of APC mutations.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Colo/citologia , Colo/metabolismo , Modelos Biológicos , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Diferenciação Celular , Movimento Celular , Proliferação de Células , Autorrenovação Celular , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , Genes APC , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Conceitos Matemáticos , Mutação , Transporte Proteico , Transdução de Sinais , Proteínas Wnt/metabolismo
4.
J Math Biol ; 75(5): 1171-1202, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28271271

RESUMO

The Wnt/[Formula: see text]-catenin pathway plays a crucial role in stem cell renewal and differentiation in the normal human colonic crypt. The balance between [Formula: see text]-catenin and APC along the crypt axis determines its normal functionality. The mechanism that deregulates this balance may give insight into the initiation of colorectal cancer. This is significant because the spatial dysregulation of [Formula: see text]-catenin by the mutated tumor suppressor gene/protein APC in human colonic crypts is responsible for the initiation and growth of colorectal cancer. We consider a regulatory function that promotes APC synthesis within the cell and its effect on the accumulation of the Wnt target protein, [Formula: see text]-catenin. It is evident that an APC gradient exists along the crypt axis; however, the mechanism by which APC expression is regulated within the cell is not well known. We investigate the dynamics of an APC regulatory mechanism with an increased level of Axin at the subcellular level. Model output shows an increase of APC for a diminished Wnt signal, which explains the APC gradient along the crypt. We find that the dynamic interplay between [Formula: see text]-catenin, APC, and Axin produces oscillatory behavior, which is controlled by the Wnt stimulus. In the presence of reduced functional APC, the oscillations are amplified, which suggests that the cell remains in a more proliferative state for longer periods of time. Increased Axin levels (typical of mammalian cells) reduce oscillatory behavior and minimize the levels of [Formula: see text]-catenin within the cell while raising the levels of APC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína Axina/metabolismo , Colo/metabolismo , Modelos Biológicos , beta Catenina/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Colo/citologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Simulação por Computador , Humanos , Cinética , Conceitos Matemáticos , Via de Sinalização Wnt
5.
Am J Physiol Gastrointest Liver Physiol ; 311(4): G624-G633, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562061

RESUMO

The impact of the dietary protein level on the process of colonic mucosal inflammation and subsequent recovery remains largely unknown. In this study, we fed DSS-treated mice with either a normoproteic (NP) or a high-protein (HP) isocaloric diet from the beginning of the 5-day dextran sulfate sodium (DSS) treatment to 14 days later. Measurements of colitis indicators (colon weight:length ratio, myeloperoxidase activity, cytokine expressions) showed a similar level of colonic inflammation in both DSS groups during the colitis induction phase. However, during the colitis resolution phase, inflammation intensity was higher in the DSS-HP group than in the DSS-NP group as evidenced by higher inflammatory score and body weight loss. This coincided with a higher mortality rate. In surviving animals, an increase in colonic crypt height associated with a higher number of colon epithelial cells per crypt, and TGF-ß3 content was observed in the DSS-HP vs. DSS-NP group. Moreover, colonic expression patterns of tight junction proteins and E-cadherin were also different according to the diet. Altogether, our results indicate that the HP diet, when given during both the induction and resolution periods of DSS-induced colitis, showed deleterious effects during the post-induction phase. However, HP diet ingestion was also associated with morphological and biochemical differences compatible with higher colonic epithelium restoration in surviving animals, indicating an effect of the dietary protein level on colonic crypt repair after acute inflammation. These data highlight the potential impact of the dietary protein amount during the colitis course.


Assuntos
Colite/dietoterapia , Colo/efeitos dos fármacos , Proteínas Alimentares/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana , Proteínas Alimentares/administração & dosagem , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/dietoterapia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Fator de Crescimento Transformador beta3/metabolismo
6.
J R Soc Interface ; 21(215): 20230756, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38900957

RESUMO

The health and well-being of a host are deeply influenced by the interactions with its gut microbiota. Contrasted environmental conditions, such as diseases or dietary habits, play a pivotal role in modulating these interactions, impacting microbiota composition and functionality. Such conditions can also lead to transitions from beneficial to detrimental symbiosis, viewed as alternative stable states of the host-microbiota dialogue. This article introduces a novel mathematical model exploring host-microbiota interactions, integrating dynamics of the colonic epithelial crypt, microbial metabolic functions, inflammation sensitivity and colon flows in a transverse section. The model considers metabolic shifts in epithelial cells based on butyrate and hydrogen sulfide concentrations, innate immune pattern recognition receptor activation, microbial oxygen tolerance and the impact of antimicrobial peptides on the microbiota. Using the model, we demonstrated that a high-protein, low-fibre diet exacerbates detrimental interactions and compromises beneficial symbiotic resilience, underscoring a destabilizing effect towards an unhealthy state. Moreover, the proposed model provides essential insights into oxygen levels, fibre and protein breakdown, and basic mechanisms of innate immunity in the colon and offers a crucial understanding of factors influencing the colon environment.


Assuntos
Microbioma Gastrointestinal , Modelos Biológicos , Simbiose , Humanos , Microbioma Gastrointestinal/fisiologia , Simbiose/fisiologia , Colo/metabolismo , Colo/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata
7.
Comput Biol Med ; 173: 108354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522251

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with colonic crypts (CC) being crucial in its development. Accurate segmentation of CC is essential for decisions CRC and developing diagnostic strategies. However, colonic crypts' blurred boundaries and morphological diversity bring substantial challenges for automatic segmentation. To mitigate this problem, we proposed the Dual-Branch Asymmetric Encoder-Decoder Segmentation Network (DAUNet), a novel and efficient model tailored for confocal laser endomicroscopy (CLE) CC images. In DAUNet, we crafted a dual-branch feature extraction module (DFEM), employing Focus operations and dense depth-wise separable convolution (DDSC) to extract multiscale features, boosting semantic understanding and coping with the morphological diversity of CC. We also introduced the feature fusion guided module (FFGM) to adaptively combine features from both branches using cross-group spatial and channel attention to improve the model representation in focusing on specific lesion features. These modules are seamlessly integrated into the encoder for effective multiscale information extraction and fusion, and DDSC is further introduced in the decoder to provide rich representations for precise segmentation. Moreover, the local multi-layer perceptron (LMLP) module is designed to decouple and recalibrate features through a local linear transformation that filters out the noise and refines features to provide edge-enriched representation. Experimental evaluations on two datasets demonstrate that the proposed method achieves Intersection over Union (IoU) scores of 81.54% and 84.83%, respectively, which are on par with state-of-the-art methods, exhibiting its effectiveness for CC segmentation. The proposed method holds great potential in assisting physicians with precise lesion localization and region analysis, thereby improving the diagnostic accuracy of CRC.


Assuntos
Colo , Capacidades de Enfrentamento , Colo/diagnóstico por imagem , Armazenamento e Recuperação da Informação , Redes Neurais de Computação , Semântica , Processamento de Imagem Assistida por Computador
8.
Genome Biol ; 25(1): 210, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107855

RESUMO

BACKGROUND: Microsatellite instability (MSI) due to mismatch repair deficiency (dMMR) is common in colorectal cancer (CRC). These cancers are associated with somatic coding events, but the noncoding pathophysiological impact of this genomic instability is yet poorly understood. Here, we perform an analysis of coding and noncoding MSI events at the different steps of colorectal tumorigenesis using whole exome sequencing and search for associated splicing events via RNA sequencing at the bulk-tumor and single-cell levels. RESULTS: Our results demonstrate that MSI leads to hundreds of noncoding DNA mutations, notably at polypyrimidine U2AF RNA-binding sites which are endowed with cis-activity in splicing, while higher frequency of exon skipping events are observed in the mRNAs of MSI compared to non-MSI CRC. At the DNA level, these noncoding MSI mutations occur very early prior to cell transformation in the dMMR colonic crypt, accounting for only a fraction of the exon skipping in MSI CRC. At the RNA level, the aberrant exon skipping signature is likely to impair colonic cell differentiation in MSI CRC affecting the expression of alternative exons encoding protein isoforms governing cell fate, while also targeting constitutive exons, making dMMR cells immunogenic in early stage before the onset of coding mutations. This signature is characterized by its similarity to the oncogenic U2AF1-S34F splicing mutation observed in several other non-MSI cancer. CONCLUSIONS: Overall, these findings provide evidence that a very early RNA splicing signature partly driven by MSI impairs cell differentiation and promotes MSI CRC initiation, far before coding mutations which accumulate later during MSI tumorigenesis.


Assuntos
Processamento Alternativo , Neoplasias Colorretais , Instabilidade de Microssatélites , Fator de Processamento U2AF , Neoplasias Colorretais/genética , Humanos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Mutação , Sítios de Ligação , Éxons
9.
Exp Gerontol ; 135: 110924, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32173460

RESUMO

OBJECTIVE: Mitochondria produce cellular energy via oxidative phosphorylation (OXPHOS), mediated by respiratory chain complexes I to IV and ATP synthase (complex V). Mitochondrial respiratory complexes have been shown to decline with age in several tissues. As the intestinal epithelium is a tissue with a high energy demand, the aim of the present study was to establish whether the expression profile of OXPHOS subunits in the intestinal mucosa changes during the aging process. DESIGN: Biopsies of intestinal mucosa with no evidence of endoscopic or histomorphologic abnormalities, taken from 55 patients (mean age 42 years, age range 4-82 years; 62% female), were divided into four age groups (4-19, 20-39, 40-59, ≥60 years). Sections from different intestinal segments (terminal ileum, ascending colon, and sigmoid colon/rectum) were stained immunohistochemically (IHC) for subunits of OXPHOS complexes I-V and the voltage-dependent anion-selective channel 1 protein (VDAC1, porin), a marker of mitochondrial mass. Scores for IHC staining were determined by multiplication of the staining intensity and the percentage of positive cells. In addition, the numbers of intestinal crypts staining positive, partly positive, and negative were assessed. RESULTS: The average protein expression levels of OXPHOS subunits increased continuously from childhood onward, peaked in persons aged 20 to 59 years, and declined thereafter. This was seen for complexes II to V in the terminal ileum, complexes I to V in the ascending colon, and complexes I to IV in the sigmoid colon/rectum. Across all age groups, no effect of age on expression of the porin subunit VDAC1 was detected. The number of complex I- and IV-negative crypts in different intestinal segments increased with age. CONCLUSION: The protein expression levels of OXPHOS complexes increases from childhood onward and declines in elderly individuals, while the numbers of crypts with partial or complete loss of expression of complexes I and IV increase continuously with age. These data suggest that the continued reductions in the levels of mitochondrial OXPHOS complexes in crypts might be compensated in adulthood, but that, ultimately, reduced expression levels occur in persons aged 60 years and older. These findings raise two important questions: first, can the process of aging could be delayed through (pharmacological) intervention of mitochondrial pathways, and second, pathophysiologically, are these findings associated with disorders of the intestinal mucosa, e.g. inflammation?


Assuntos
Complexo I de Transporte de Elétrons , Mucosa Intestinal , Fosforilação Oxidativa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Criança , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Cell Mol Gastroenterol Hepatol ; 10(1): 133-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32044398

RESUMO

BACKGROUND & AIMS: Colonic stem cells are essential for producing the mucosal lining, which in turn protects stem cells from insult by luminal factors. Discovery of genetic and biochemical events that control stem cell proliferation and differentiation can be leveraged to decipher the causal factors of ulcerative colitis and aid the development of more effective therapy. METHODS: We performed in vivo and in vitro studies from control (nuclear receptor corepressor 1 [NCoR1F/F]) and intestinal epithelial cell-specific NCoR1-deficient mice (NCoR1ΔIEC). Mice were challenged with dextran sodium sulfate to induce experimental ulcerative colitis, followed by colitis examination, barrier permeability analysis, cell proliferation immunostaining assays, and RNA sequencing analysis. By using crypt cultures, the organoid-forming efficiency, cell proliferation, apoptosis, and histone acetylation were analyzed after butyrate and/or tumor necrosis factor α treatments. RESULTS: NCoR1ΔIEC mice showed a dramatic increase in disease severity in this colitis model, with suppression of proliferative cells at the crypt base as an early event and a concomitant increase in barrier permeability. Genome expression patterns showed an important role for NCoR1 in colonic stem cell proliferation and secretory cell differentiation. Colonic organoids cultured from NCoR1ΔIEC mice were more sensitive to butyrate-induced cell growth inhibition and apoptosis, which were exaggerated further by tumor necrosis factor α co-treatment, which was accompanied by increased histone acetylation. CONCLUSIONS: NCoR1 regulates colonic stem cell proliferation and secretory cell differentiation. When NCoR1 is disrupted, barrier protection is weakened, allowing luminal products such as butyrate to penetrate and synergistically damage the colonic crypt cells. Transcript profiling: RNA sequencing data have been deposited in the GEO database, accession number: GSE136153.


Assuntos
Células-Tronco Adultas/patologia , Colite Ulcerativa/patologia , Colo/patologia , Mucosa Intestinal/patologia , Correpressor 1 de Receptor Nuclear/metabolismo , Acetilação , Células-Tronco Adultas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Butiratos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colo/citologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epigênese Genética , Células Epiteliais/patologia , Feminino , Histonas , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Correpressor 1 de Receptor Nuclear/genética , Organoides , Cultura Primária de Células
11.
Math Biosci ; 315: 108221, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271804

RESUMO

Colonic polyps, which are abnormal growths in the colon, are a major concern in colon cancer diagnosis and prevention. Medical studies evidence that there is a correlation between histopathology and the shapes of the orifices in colonic crypts. We propose a biomathematical model for simulating the appearance of anomalous shapes for the orifices of colonic crypts, associated to an abnormal cell proliferation. It couples a mechanical model that is a mixed elastic/viscoelastic quasi-static model describing the deformation of the crypt orifice, with a convection-diffusion model that simulates the crypt cell dynamics in space and time. The coupling resides in the variation of pressure generated by abnormal proliferative cells that induce a mechanical force and originate the change in shape of the crypt orifice. Furthermore the model is formulated in a two-dimensional setting, for emulating the top view of the colonic mucosa, observed in vivo in colonoscopy images. The primary focus of this study is on the modeling of this complex biological phenomenon, by defining an appropriate reduced biomathematical model. Additionally, a numerical procedure to determine its solution is also addressed. The overall numerical simulations indicate that an excess of cell proliferation, in different crypt locations, creates some of the anomalous patterns of the colonic crypt orifices, observed in vivo in medical images.


Assuntos
Colo , Neoplasias do Colo , Mucosa Intestinal , Modelos Biológicos , Pólipos , Proliferação de Células/fisiologia , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/prevenção & controle , Humanos
12.
Curr Protoc Pharmacol ; 85(1): e54, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920154

RESUMO

Human intestinal organoids have enabled performance of functional epithelial studies and modeling of human diseases of the intestine. This unit describes 1) a method to isolate and culture crypts from human intestinal tissue, 2) use of combinatorial methods to expand stem cell-enriched spheroids and differentiate them into organoids composed of various intestinal epithelial cell types, and 3) methods to stimulate these organoids with and measure their responsiveness to external stimuli. To validate the differentiation, organoids can be stained to qualitatively evaluate the presence of colonic crypt morphology and specialized epithelial cell markers. These organoids are responsive to challenge with tumor necrosis factor α (TNFα), resulting in cytokine-induced apoptosis. TNFα-driven apoptosis can be blocked by a small-molecule inhibitor of Ire1α (4µ8C), an endoplasmic-reticulum stress sensor. This is one example of how the human intestinal organoid model can be a powerful tool to elucidate important biological pathways involved in human disease in intestinal epithelial cells. © 2019 by John Wiley & Sons, Inc.


Assuntos
Colo , Organoides , Apoptose/efeitos dos fármacos , Colo/anatomia & histologia , Colo/efeitos dos fármacos , Expressão Gênica , Humanos , Himecromona/análogos & derivados , Himecromona/farmacologia , Técnicas de Cultura de Órgãos , Organoides/anatomia & histologia , Organoides/efeitos dos fármacos , RNA/análise , Fator de Necrose Tumoral alfa/farmacologia
13.
R Soc Open Sci ; 4(4): 160858, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28484606

RESUMO

Colorectal cancer (CRC) is a major cause of cancer mortality. Colon crypts are multi-cellular flask-shaped invaginations of the colonic epithelium, with stem cells at their base which support the continual turnover of the epithelium with loss of cells by anoikis from the flat mucosa. Mutations in these stem cells can become embedded in the crypts, a process that is strongly implicated in CRC initiation. We describe a computational model which includes novel features, including an accurate representation of the geometry of the crypt mouth. Model simulations yield previously unseen emergent phenomena, such as localization of cell death to a small region of the crypt mouth which corresponds with that observed in vivo. A mechanism emerges in the model for regulation of crypt cellularity in response to changes in either cell proliferation rates or membrane adhesion strengths. We show that cell shape assumptions influence this behaviour, with cylinders recapitulating biology better than spheres. Potential applications of the model include determination of roles of mutations in neoplasia and exploring factors for altered crypt morphodynamics.

14.
World J Gastrointest Pathophysiol ; 6(4): 86-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26600965

RESUMO

Colorectal cancer (CRC) that comprises about 50% of estimated gastrointestinal cancers remains a high mortality malignancy. It is estimated that CRC will result in 9% of all cancer related deaths. CRC is the third leading malignancy affecting both males and females equally; with 9% of the estimated new cancer cases and 9% cancer related deaths. Sporadic CRC, whose incidence increases markedly with advancing age, occurs in 80%-85% patients diagnosed with CRC. Little is known about the precise biochemical mechanisms responsible for the rise in CRC with aging. However, many probable reasons for this increase have been suggested; among others they include altered carcinogen metabolism and the cumulative effects of long-term exposure to cancer-causing agents. Herein, we propose a role for self-renewing, cancer stem cells (CSCs) in regulating these cellular events. In this editorial, we have briefly described the recent work on the evolution of CSCs in gastro-intestinal track especially in the colon, and how they are involved in the age-related rise in CRC. Focus of this editorial is to provide a description of (1) CSC; (2) epigenetic and genetic mechanisms giving rise to CSCs; (3) markers of CSC; (4) characteristics; and (5) age-related increase in CSC in the colonic crypt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA