Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203820

RESUMO

Microbes employ effectors to disrupt immune responses and promote host colonization. Conserved motifs including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, Chitin-bind, DPBB_1 (PNPi), and Cutinase have been discovered to play crucial roles in the functioning of effectors in filamentous fungi. Nevertheless, little is known about effectors with conserved motifs in endophytes. This research aims to discover the effector genes with conserved motifs in the genome of rice endophyte Falciphora oryzae. SignalP identified a total of 622 secreted proteins, out of which 227 were predicted as effector candidates by EffectorP. By utilizing HMM features, we discovered a total of 169 effector candidates with conserved motifs and three novel motifs. Effector candidates containing LysM, CFEM, DPBB_1, Cutinase, and Chitin_bind domains were conserved across species. In the transient expression assay, it was observed that one CFEM and one LysM activated cell death in tobacco leaves. Moreover, two CFEM and one Chitin_bind inhibited cell death induced by Bax protein. At various points during the infection, the genes' expression levels were increased. These results will help to identify functional effector proteins involving omics methods using new bioinformatics tools, thus providing a basis for the study of symbiosis mechanisms.


Assuntos
Ascomicetos , Algoritmos , Bioensaio , Quitina , Endófitos
2.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932309

RESUMO

The TonB system actively transports vital nutrients across the unenergized outer membranes of the majority of Gram-negative bacteria. In this system, integral membrane proteins ExbB, ExbD, and TonB work together to transduce the proton motive force (PMF) of the inner membrane to customized active transporters in the outer membrane by direct and cyclic binding of TonB to the transporters. A PMF-dependent TonB-ExbD interaction is prevented by 10-residue deletions within a periplasmic disordered domain of ExbD adjacent to the cytoplasmic membrane. Here, we explored the function of the ExbD disordered domain in more detail. In vivo photo-cross-linking through sequential pBpa substitutions in the ExbD disordered domain captured five different ExbD complexes, some of which had been previously detected using in vivo formaldehyde cross-linking, a technique that lacks the residue-specific information that can be achieved through photo-cross-linking: two ExbB-ExbD heterodimers (one of which had not been detected previously), previously detected ExbD homodimers, previously detected PMF-dependent ExbD-TonB heterodimers, and for the first time, a predicted, ExbD-TonB PMF-independent interaction. The fact that multiple complexes were captured by the same pBpa substitution indicated the dynamic nature of ExbD interactions as the energy transduction cycle proceeded in vivo In this study, we also discovered that a conserved motif-V45, V47, L49, and P50-within the disordered domain was required for signal transduction to TonB and to the C-terminal domain of ExbD and was the source of motif essentiality.IMPORTANCE The TonB system is a virulence factor for Gram-negative pathogens. The mechanism by which cytoplasmic membrane proteins of the TonB system transduce an electrochemical gradient into mechanical energy is a long-standing mystery. TonB, ExbB, and ExbD primary amino acid sequences are characterized by regions of predicted intrinsic disorder, consistent with a proposed multiplicity of protein-protein contacts as TonB proceeds through an energy transduction cycle, a complex process that has yet to be recapitulated in vitro This study validates a region of intrinsic disorder near the ExbD transmembrane domain and identifies an essential conserved motif embedded within it that transduces signals to distal regions of ExbD suggested to configure TonB for productive interaction with outer membrane transporters.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
3.
BMC Genomics ; 21(1): 190, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122294

RESUMO

BACKGROUND: The AIG (avrRpt2-induced gene) family of GTPases, characterized by the presence of a distinctive AIG1 domain, is mysterious in having a peculiar phylogenetic distribution, a predilection for undergoing expansion and loss, and an uncertain functional role, especially in invertebrates. AIGs are frequently represented as GIMAPs (GTPase of the immunity associated protein family), characterized by presence of the AIG1 domain along with coiled-coil domains. Here we provide an overview of the remarkably expanded AIG repertoire of the freshwater gastropod Biomphalaria glabrata, compare it with AIGs in other organisms, and detail patterns of expression in B. glabrata susceptible or resistant to infection with Schistosoma mansoni, responsible for the neglected tropical disease of intestinal schistosomiasis. RESULTS: We define the 7 conserved motifs that comprise the AIG1 domain in B. glabrata and detail its association with at least 7 other domains, indicative of functional versatility of B. glabrata AIGs. AIG genes were usually found in tandem arrays in the B. glabrata genome, suggestive of an origin by segmental gene duplication. We found 91 genes with complete AIG1 domains, including 64 GIMAPs and 27 AIG genes without coiled-coils, more than known for any other organism except Danio (with > 100). We defined expression patterns of AIG genes in 12 different B. glabrata organs and characterized whole-body AIG responses to microbial PAMPs, and of schistosome-resistant or -susceptible strains of B. glabrata to S. mansoni exposure. Biomphalaria glabrata AIG genes clustered with expansions of AIG genes from other heterobranch gastropods yet showed unique lineage-specific subclusters. Other gastropods and bivalves had separate but also diverse expansions of AIG genes, whereas cephalopods seem to lack AIG genes. CONCLUSIONS: The AIG genes of B. glabrata exhibit expansion in both numbers and potential functions, differ markedly in expression between strains varying in susceptibility to schistosomes, and are responsive to immune challenge. These features provide strong impetus to further explore the functional role of AIG genes in the defense responses of B. glabrata, including to suppress or support the development of medically relevant S. mansoni parasites.


Assuntos
Biomphalaria/genética , GTP Fosfo-Hidrolases/genética , Perfilação da Expressão Gênica/veterinária , Sequenciamento Completo do Genoma/veterinária , Motivos de Aminoácidos , Animais , Biomphalaria/parasitologia , Biologia Computacional/métodos , Vetores de Doenças , Evolução Molecular , GTP Fosfo-Hidrolases/química , Regulação da Expressão Gênica , Família Multigênica , Domínios Proteicos
4.
Biochem Biophys Res Commun ; 523(2): 287-292, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862141

RESUMO

Cyclic-di-GMP (c-di-GMP) synthesized by diguanylate cyclases has been an important and ubiquitous secondary messenger in almost all bacterial systems. In Vibrio cholerae, c-di-GMP plays an intricate role in the production of the exopolysaccharide matrix, and thereby, in biofilm formation. The formation of the surface biofilm enables the bacteria to survive in aquatic bodies, when not infecting a human host. Diguanylate cyclases are the class of enzymes which synthesize c-di-GMP from two molecules of GTP and are endowed with a GGDEF or, a GGEEF signature domain. The VC0395_0300 protein from V. cholerae, has been established as a diguanylate cyclase with a necessary role in biofilm formation. Here we present the structure of an N-terminally truncated form of VC0395_0300, which retains the active GGEEF domain for diguanylate cyclase activity but lacks 160 residues from the poorly organized N-terminal domain. X-ray diffraction data was collected from a crystal of VC0395_0300(161-321) to a resolution of 1.9 Å. The structure displays remarkable topological similarity with diguanylate cyclases from other bacterial systems, but lacks the binding site for c-di-GMP present in its homologues. Finally, we demonstrate the ability of the truncated diguanylate cyclase VC0395_0300(161-321) to produce c-di-GMP, and its role in biofilm formation for the bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Vibrio cholerae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Domínio Catalítico , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Domínios Proteicos , Sistemas do Segundo Mensageiro , Solubilidade , Eletricidade Estática , Vibrio cholerae/genética , Vibrio cholerae/fisiologia
5.
Int J Mol Sci ; 20(8)2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31010077

RESUMO

Purple acid phosphatase (PAP) encoding genes are a multigene family. PAPs require iron (Fe) to exert their functions that are involved in diverse biological roles including Fe homeostasis. However, the possible roles of PAPs in response to excess Fe remain unknown. In this study, we attempted to understand the regulation of PAPs by excess Fe in tea plant (Camellia sinensis). A genome-wide investigation of PAP encoding genes identified 19 CsPAP members based on the conserved motifs. The phylogenetic analysis showed that PAPs could be clustered into four groups, of which group II contained two specific cysteine-containing motifs "GGECGV" and "YERTC". To explore the expression patterns of CsPAP genes in response to excessive Fe supply, RNA-sequencing (RNA-seq) analyses were performed to compare their transcript abundances between tea plants that are grown under normal and high iron conditions, respectively. 17 members were shown to be transcribed in both roots and leaves. When supplied with a high amount of iron, the expression levels of four genes were significantly changed. Of which, CsPAP15a, CsPAP23 and CsPAP27c were shown as downregulated, while the highly expressed CsPAP10a was upregulated. Moreover, CsPAP23 was found to be alternatively spliced, suggesting its post-transcriptional regulation. The present work implicates that some CsPAP genes could be associated with the responses of tea plants to the iron regime, which may offer a new direction towards a further understanding of iron homeostasis and provide the potential approaches for crop improvement in terms of iron biofortification.


Assuntos
Fosfatase Ácida/genética , Camellia sinensis/enzimologia , Glicoproteínas/genética , Ferro/metabolismo , Proteínas de Plantas/genética , Fosfatase Ácida/classificação , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Camellia sinensis/genética , Genes de Plantas , Glicoproteínas/classificação , Glicoproteínas/metabolismo , Família Multigênica , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Splicing de RNA , Alinhamento de Sequência , Transcriptoma
6.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484390

RESUMO

The largest group of deubiquitinases-ubiquitin-specific proteases (UBPs)-perform extensive and significant roles in plants, including the regulation of development and stress responses. A comprehensive analysis of UBP genes has been performed in Arabidopsis thaliana, but no systematic study has been conducted in moso bamboo (Phyllostachys edulis). In this study, the genome-wide identification, classification, gene, protein, promoter region characterization, divergence time, and expression pattern analyses of the UBPs in moso bamboo were conducted. In total, 48 putative UBP genes were identified in moso bamboo, which were divided into 14 distinct subfamilies in accordance with a comparative phylogenetic analysis using 132 full-length protein sequences, including 48, 27, 25, and 32 sequences from moso bamboo, A. thaliana, rice (Oryza sativa), and purple false brome (Brachypodium distachyon), respectively. Analyses of the evolutionary patterns and divergence levels revealed that the PeUBP genes experienced a duplication event approximately 15 million years ago and that the divergence between PeUBP and OsUBP occurred approximately 27 million years ago. Additionally, several PeUBP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating their potential roles in abiotic stress responses in plants.


Assuntos
Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/genética , Poaceae/genética
7.
Cell Biol Int ; 42(1): 34-44, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28833843

RESUMO

BRCA1 plays a central role in DNA repair. Although N-terminal RING and C-terminal BRCT domains are studied well, the functions of the central region of BRCA1 are poorly characterized. Here, we report a structural and functional analysis of BRCA1 alleles and functional human BRCA1 in chicken B-lymphocyte cell line DT40. The combination of "homologous recombineering" and "RT-cassette" enables modifications of chicken BRCA1 gene in Escherichia coli. Mutant BRCA1 knock-in DT40 cell lines were generated using BRCA1 mutation constructs by homologous recombination with a targeting efficiency of up to 100%. Our study demonstrated that deletion of motifs 2-9 BRCA1Δ/Δ181-1415 (Caenorhabditis elegans BRCA1 mimic) or deletion of motif 1 BRCA1Δ/Δ126-136 decreased cell viability following cisplatin treatment. Furthermore, deletion of motifs 5 and 6 BRCA1Δ/Δ525-881 within DNA-binding region, even the conserved 7-amino acid deletion BRCA1Δ/Δ872-878 within motif 6, caused a decreased cell viability upon cisplatin treatment. Surprisingly, human BRCA1 is functional in DT40 cells as indicated by DNA damage-induced Rad 51 foci formation in human BRCA1 knock-in DT40 cells. These results demonstrate that those conserved motifs within the central region are essential for DNA repair functions of BRCA1. These findings provide a valuable tool for the development of new therapeutic modalities of breast cancer linked to BRCA1.


Assuntos
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Alelos , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Galinhas , Cisplatino/farmacologia , Dano ao DNA/genética , Reparo do DNA , Feminino , Humanos , Linfoma de Células B , Mutação , Proteínas Nucleares/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
8.
Appl Microbiol Biotechnol ; 102(9): 4039-4048, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29516145

RESUMO

Laccase (EC1.10.3.2), an oxidase that binds multiple copper ions, is heterogeneous in different species, implying diversity in its function. Nevertheless, the four copper-binding motifs are conserved in most laccases, especially bacterial forms. In order to exploit laccase more widely and more effectively in industrial processes, we investigated the regulatory effects, if any, of the second conserved copper-binding motif in the bacterial laccases CAR2 and CAHH1. The data suggested that three critical amino acid residues His155, His157, and Thr/Ala158 in this motif strongly regulated laccase's catalysis, substrate range, and robustness. Indeed, these residues were essential for laccase's catalytic activity. The data also suggested that laccase's catalytic efficiency and activity are not completely consistent with its stability, and that the enzyme might have evolved naturally to its favor stability. This study provides important insights into the second conserved copper-binding motif and defines some of the previously undefined amino acid residues in this conserved motif and their significances.


Assuntos
Lacase/genética , Lacase/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Catálise , Cobre/metabolismo , Ativação Enzimática , Estabilidade Enzimática
9.
BMC Nephrol ; 19(1): 181, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005619

RESUMO

BACKGROUND: Sixty mutations of claudin 16 coding gene have been reported in familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) patients. Recent investigations revealed that a highly conserved glycine-leucine-tryptophan (115G-L-W117) motif in the first extracellular segment (ESC1) of claudin 16 might be essential for stabilization of the appropriately folded ECS1 structure and conservation of normal claudin 16 function. However, neither missense nor nonsense mutation has ever been described in this motif. Our study aimed at identifying mutations in a Chinese patient with FHHNC and exploring the association between genotype and phenotype. CASE PRESENTATION: A 33-year-old female presented with 4 years history of recurrent acute pyelonephritis without other notable past medical history. Her healthy parents, who aged 56 and 53 respectively, were second cousins, and her only sibling died from renal failure without definite cause at age 25. Renal ultrasound imaging demonstrated atrophic kidneys and bilateral nephrocalcinosis. The laboratory workup revealed impaired renal function (Stage CKD IV), hypocalcemia and mild hypomagnesemia, accompanied with marked renal loss of magnesium and hypercalciuria. During the follow-up, treatment with calcitriol and calcium but not with magnesium was difficult to achieve normal serum calcium levels, whereas her serum magnesium concentration fluctuated within normal ranges. In the end, the patient unavoidably reached ESRD at 36 years old. The clinical features and family history suggested the diagnosis of FHHNC. To make a definite diagnosis, we use whole-exome sequencing to identify the disease-causing mutations and Sanger sequencing to confirm the mutation co-segregation in the family. As a result, a novel homozygous mutation (c.346C > G, p.Leu116Val) in 115G-L-W117 motif of claudin 16 was identified. Her parents, grandmother and one of her cousins carried heterozygous p.Leu116Val, whereas 200 unrelated controls did not carry this mutation. CONCLUSIONS: We described a delayed diagnosis patient with FHHNC in the Chinese population and identified a novel missense mutation in the highly conserved 115G-L-W117 motif of claudin 16 for the first time. According to the reported data and the information deduced from 3D modeling, we speculate that this mutation probably reserve partial residual function which might be related to the slight phenotype of the patient.


Assuntos
Povo Asiático/genética , Claudinas/genética , Códon sem Sentido/genética , Hipercalciúria/genética , Deficiência de Magnésio/genética , Nefrocalcinose/genética , Adulto , Claudinas/química , Diagnóstico Tardio , Feminino , Humanos , Hipercalciúria/complicações , Hipercalciúria/diagnóstico , Leucina/genética , Deficiência de Magnésio/complicações , Deficiência de Magnésio/diagnóstico , Nefrocalcinose/complicações , Nefrocalcinose/diagnóstico , Linhagem , Estrutura Secundária de Proteína
10.
BMC Evol Biol ; 17(1): 238, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202710

RESUMO

BACKGROUND: The presence of non-coding introns is a characteristic feature of most eukaryotic genes. While the size of the introns, number of introns per gene and the number of intron-containing genes can vary greatly between sequenced eukaryotic genomes, the structure of a gene with reference to intron presence and positions is typically conserved in closely related species. Unexpectedly, the ABCB1 (ATP-Binding Cassette Subfamily B Member 1) gene which encodes a P-glycoprotein and underlies dwarfing traits in maize (br2), sorghum (dw3) and pearl millet (d2) displayed considerable variation in intron composition. RESULTS: An analysis of the ABCB1 gene structure in 80 angiosperms revealed that the number of introns ranged from one to nine. All introns in ABCB1 underwent either a one-time loss (single loss in one lineage/species) or multiple independent losses (parallel loss in two or more lineages/species) with the majority of losses occurring within the grass family. In contrast, the structure of the closest homolog to ABCB1, ABCB19, remained constant in the majority of angiosperms analyzed. Using known phylogenetic relationships within the grasses, we determined the ancestral branch-points where the losses occurred. Intron 7, the longest intron, was lost in only a single species, Mimulus guttatus, following duplication of ABCB1. Semiquantitative PCR showed that the M. guttatus ABCB1 gene copy without intron 7 had significantly lower transcript levels than the gene copy with intron 7. We further demonstrated that intron 7 carried two motifs that were highly conserved across the monocot-dicot divide. CONCLUSIONS: The ABCB1 gene structure is highly dynamic, while the structure of ABCB19 remained largely conserved through evolution. Precise removal of introns, preferential removal of smaller introns and presence of at least 2 bp of microhomology flanking most introns indicated that intron loss may have predominantly occurred through non-homologous end-joining (NHEJ) repair of double strand breaks. Lack of microhomology in the exon upstream of lost phase I introns was likely due to release of the selective constraint on the penultimate base (3rd base in codon) of the terminal codon by the splicing machinery. In addition to size, the presence of regulatory motifs will make introns recalcitrant to loss.


Assuntos
Genes de Plantas , Íntrons/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Sequência de Bases , Sequência Conservada/genética , DNA Complementar/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Mimulus/genética , Motivos de Nucleotídeos/genética , Oryza/genética , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de DNA
11.
BMC Evol Biol ; 16(1): 220, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756202

RESUMO

BACKGROUND: Subtilisin-like serine proteases or Subtilases in fungi are important for penetration and colonization of host. In Hypocreales, these proteins share several properties with other fungal, bacterial, plant and mammalian homologs. However, adoption of specific roles in entomopathogenesis may be governed by attainment of unique biochemical and structural features during the evolutionary course. Due to such functional shifts Subtilases coded by different family members of Hypocreales acquire distinct features according to respective hosts and lifestyle. We conducted phylogenetic and DIVERGE analyses and identified important protein residues that putatively assign functional specificity to Subtilases in fungal families/species under the order Hypocreales. RESULTS: A total of 161 Subtilases coded by 10 species from five different families under the fungal order Hypocreales was included in the analysis. Based on the presence of conserved domains, the Subtilase genes were divided into three subfamilies, Subtilisin (S08.005), Proteinase K (S08.054) and Serine-carboxyl peptidases (S53.001). These subfamilies were investigated for phylogenetic associations, protein residues under positive selection and functional divergence among paralogous clades. The observations were co-related with the life-styles of the fungal families/species. Phylogenetic and Divergence analyses of Subtilisin (S08.005) and Proteinase K (S08.054) families of proteins revealed that the paralogous clades were clear-cut representation of familial origin of the protein sequences. We observed divergence between the paralogous clades of plant-pathogenic fungi (Nectriaceae), insect-pathogenic fungi (Cordycipitaceae/Clavicipitaceae) and nematophagous fungi (Ophiocordycipitaceae). In addition, Subtilase genes from the nematode-parasitic fungus Purpureocillium lilacinum made a unique cluster which putatively indicated that the fungus might have developed distinctive mechanisms for nematode-pathogenesis. Our evolutionary genetics analysis revealed evidence of positive selection on the Subtilisin (S08.005) and Proteinase K (S08.054) protein sequences of the entomopathogenic and nematophagous species belonging to Cordycipitaceae, Clavicipitaceae and Ophiocordycipitaceae families of Hypocreales. CONCLUSIONS: Our study provided new insights into the evolution of Subtilisin like serine proteases in Hypocreales, a fungal order largely consisting of biological control species. Subtilisin (S08.005) and Proteinase K (S08.054) proteins seemed to play important roles during life style modifications among different families and species of Hypocreales. Protein residues found significant in functional divergence analysis in the present study may provide support for protein engineering in future.


Assuntos
Evolução Molecular , Variação Genética , Hypocreales/enzimologia , Hypocreales/genética , Filogenia , Subtilisinas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada/genética , Endopeptidase K/genética , Funções Verossimilhança , Modelos Genéticos , Família Multigênica , Seleção Genética , Especificidade da Espécie
12.
Mol Biol Rep ; 43(3): 151-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26878855

RESUMO

Manganese (Mn) is an essential micronutrient in plant life cycle. It may be involved in photosynthesis, carbohydrate and lipid biosynthesis, and oxidative stress protection. Mn deficiency inhibits the plant growth and development, and causes the various plant symptoms such as interveinal chlorosis and tissue necrosis. Despite its importance in plant life cycle, we still have limited knowledge about Mn transporters in many plant species. Therefore, this study aimed to identify and characterize high affinity Arabidopsis Mn root transporter NRAMP1 orthologs in 17 different plant species. Various in silico methods and digital gene expression data were used in identification and characterization of NRAMP1 homologs; physico-chemical properties of sequences were calculated, putative transmembrane domains (TMDs) and conserved motif signatures were determined, phylogenetic tree was constructed, 3D models and interactome map were generated, and gene expression data was analyzed. 49 NRAMP1 homologs were identified from proteome datasets of 17 plant species using AtNRAMP1 as query. Identified sequences were characterized with a NRAMP domain structure, 10-12 putative TMDs with cytosolic N- and C-terminuses, and 10-14 exons encoding a protein of 500-588 amino acids and 53.8-64.3 kDa molecular weight with basic characteristics. Consensus transport residues, GQSSTITGTYAGQY(/F)V(/I)MQGFLD(/E/N) between TMD-8 and 9 were identified in all sequences but putative N-linked glycosylation sites were not highly conserved. In phylogeny, NRAMP1 sequences demonstrated divergence in lower and higher plants as well as in monocots and dicots. Despite divergence of lower plant Physcomitrella patens in phylogeny, it showed similarity in superposed 3D models. Phylogenetic distribution of AtNRAMP1 and 6 homologs inferred a functional relationship to NRAMP6 sequences in Mn transport, while distribution of OsNRAMP1 and 5 homologs implicated an involvement of NRAMP1 sequences in Mn transport or a cross-talk between in Fe-Mn homeostasis. Interactome analysis further confirmed this cross-talk between Mn and Fe pathways. Gene expression profile of AtNRAMP1 under Fe-, K-, P- and S-deficiencies, and cold, drought, heat and salt stresses revealed various proteins involving in transcription regulation, cofactor biosynthesis, diverse developmental roles, carbohydrate metabolism, oxidation-reduction reactions, cellular signaling and protein degradation pathways. Mn deficiency or toxicity could cause serious adverse effects in plants as well as in humans. To reduce these adversities mainly rely on understanding the molecular mechanisms underlying Mn uptake from the soil. However, we still have limited knowledge regarding the structural and functional roles of Mn transporters in many plant species. Therefore, identification and characterization of Mn root uptake transporter, NRAMP1 orthologs in various plant species will provide valuable theoretical knowledge to better understand Mn transporters as well as it may become an insight for future studies aiming to develop genetically engineered and biofortified plants.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Homeostase/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/genética , Cátions , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Conformação Proteica
13.
Can J Microbiol ; 60(8): 509-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25065666

RESUMO

Tannase is an enzyme that catalyses the hydrolysis of ester bonds present in tannins. Most of the scientific reports about this biocatalysis focus on aspects related to tannase production and its recovery; on the other hand, reports assessing the molecular aspects of the tannase gene or protein are scarce. In the present study, a tannase gene fragment from several Aspergillus strains isolated from the Mexican semidesert was sequenced and compared with tannase amino acid sequences reported in NCBI database using bioinformatics tools. The genetic relationship among the different tannase sequences was also determined. A conserved region of 7 amino acids was found with the conserved motif GXSXG common to esterases, in which the active-site serine residue is located. In addition, in Aspergillus niger strains GH1 and PSH, we found an extra codon in the tannase sequences encoding glycine. The tannase gene belonging to semidesert fungal strains followed a neutral evolution path with the formation of 10 haplotypes, of which A. niger GH1 and PSH haplotypes are the oldest.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Sequência de Aminoácidos , Sequência de Bases , Hidrolases de Éster Carboxílico/química , Sequência Conservada , Proteínas Fúngicas/química , Genes Fúngicos , Haplótipos , Dados de Sequência Molecular , Tipagem Molecular , Técnicas de Tipagem Micológica , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA
14.
Plant Signal Behav ; 19(1): 2338985, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38597293

RESUMO

The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLEFERATING-CELL-FACTORS (TCP) gene family is a plant-specific transcriptional factor family involved in leaf morphogenesis and senescence, lateral branching, hormone crosstalk, and stress responses. To date, a systematic study on the identification and characterization of the TCP gene family in kiwifruit has not been reported. Additionally, the function of kiwifruit TCPs in regulating kiwifruit responses to the ethylene treatment and bacterial canker disease pathogen (Pseudomonas syringae pv. actinidiae, Psa) has not been investigated. Here, we identified 40 and 26 TCP genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes, respectively. The synteny analysis of AcTCPs illustrated that whole-genome duplication accounted for the expansion of the TCP family in Ac. Phylogenetic, conserved domain, and selection pressure analysis indicated that TCP family genes in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in TCP gene number and distribution. Our results also suggested that protein structure and cis-element architecture in promoter regions of TCP genes have driven the function divergence of duplicated gene pairs. Three and four AcTCP genes significantly affected kiwifruit responses to the ethylene treatment and Psa invasion, respectively. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit TCPs.


Assuntos
Actinidia , Filogenia , Actinidia/genética , Fatores de Transcrição/genética , Etilenos , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia
15.
Trends Pharmacol Sci ; 45(3): 268-280, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38296675

RESUMO

Olfactory receptors (ORs) form the most important chemosensory receptor family responsible for our sense of smell in the nasal olfactory epithelium. This receptor family belongs to the class A G protein-coupled receptors (GPCRs). Recent research has indicated that ORs are involved in many nonolfactory physiological processes in extranasal tissue, such as the brain, pancreas, and testes, and implies the possible role of their dysregulation in various diseases. The recently released structures of OR51E2 and consensus OR52 have also unveiled the uniqueness of ORs from other class A GPCR members. In this review, we discuss these recent developments and computational modeling efforts toward understanding the structural properties of unresolved ORs, which could guide potential future OR-targeted drug discovery.


Assuntos
Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Olfato , Descoberta de Drogas , Encéfalo/metabolismo , Proteínas de Neoplasias
16.
Biotechnol Rep (Amst) ; 43: e00845, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38962072

RESUMO

Oryza sativa L. is the world's most essential and economically important food crop. Climate change and ecological imbalances make rice plants vulnerable to abiotic and biotic stresses, threatening global food security. The Alfin-like (AL) transcription factor family plays a crucial role in plant development and stress responses. This study comprehensively analyzed this gene family and their expression profiles in rice, revealing nine AL genes, classifying them into three distinct groups based on phylogenetic analysis and identifying four segmental duplication events. RNA-seq data analysis revealed high expression levels of OsALs in different tissues, growth stages, and their responsiveness to stresses. RT-qPCR data showed significant expression of OsALs in different abiotic stresses. Identification of potential cis-regulatory elements in promoter regions has also unveiled their involvement. Tertiary structures of the proteins were predicted. These findings would lay the groundwork for future research to reveal their molecular mechanism in stress tolerance and plant development.

17.
Plant Mol Biol Report ; 31: 303-313, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24415841

RESUMO

Cellulose is the major component of plant cell walls, providing mechanical strength to the structural framework of plants. In association with lignin, hemicellulose, protein and pectin, cellulose forms the strong yet flexible bio-composite tissue of wood. Wood formation is an essential biological process and is of significant importance to the cellulosic private sector industry. Cellulose synthase genes encode the catalytic subunits of a large protein complex responsible for the biogenesis of cellulose in higher plants. The hybrid Acacia auriculiformis x Acacia mangium represents an important source of tree cellulose for forest-based product manufacturing, with enormous economic potential. In this work, we isolate the first cellulose synthase gene, designated AaxmCesA1, from this species. The isolated full-length AaxmCesA1 cDNA encodes a polypeptide of 1,064 amino acids. Sequence analyses revealed that AaxmCesA1 cDNA possesses the key motif characteristics of a CesA protein. AaxmCesA1 shares more than 75 % amino acid sequence identity with CesA proteins from other plant species. Subsequently, the full-length AaxmCesA1 gene of 7,389 bp with partial regulatory and 13 intron regions was also isolated. Relative gene expression analysis by quantitative PCR in different tissues of the Acacia hybrid, suggests the involvement of the AaxmCesA1 gene in primary cell wall synthesis of rapidly dividing young root cells. Similarity analyses using Blast algorithms also suggests a role in primary cell wall deposition in the Acacia hybrid. Southern analysis predicts that AaxmCesA1 is a member of a multigene family with at least two isoforms in the genome of the Acacia hybrid.

18.
J Hazard Mater ; 460: 132349, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657324

RESUMO

Cadmium (Cd) pollution of soil occurs worldwide. Phytoremediation is an effective approach for cleaning up Cd polluted soil. Fast growing Populus species with high Cd uptake capacities are desirable for phytoremediation. Thus, it is important to elucidate the molecular functions of genes involved in Cd uptake by poplars. In this study, PcPLAC8-10, a homolog of Human placenta-specific gene 8 (PLAC8) implicated in Cd transport was functionally characterized in Populus × canescens. PcPLAC8-10 was transcriptionally induced in Cd-treated roots and it encoded a plasma membrane-localized transporter. PcPLAC8-10 exhibited Cd uptake activity when expressed in yeast cells. No difference in growth was observed between wild type (WT) and PcPLAC8-10-overexpressing poplars. PcPLAC8-10-overexpressing poplars exhibited increases in net Cd2+ influxes by 192% and Cd accumulation by 57% in the roots. However, similar reductions in biomass were found in WT and transgenic poplars when exposed to Cd. The complete motif of CCXXXXCPC in PcPLAC8-10 was essential for its Cd transport activity. These results suggest that PcPLAC8-10 is a plasma membrane-localized transporter responsible for Cd uptake in the roots and the complete CCXXXXCPC motif of PcPLAC8-10 plays a key role in its Cd transport activity in poplars.


Assuntos
Cádmio , Populus , Humanos , Populus/genética , Transporte Biológico , Transporte de Íons , Proteínas de Membrana Transportadoras , Saccharomyces cerevisiae , Solo , Proteínas
19.
Mitochondrion ; 68: 72-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400160

RESUMO

The animal mitogenomes which undergone a reductive evolution has an obvious loss of coding capacity compared to their known closest relatives, but it has not yet been fully investigated why and how the intergenic regions do not encode protein and have no known functions, are stably maintained, replicated, and transmitted by the genome. These relatively small intergenic regions may not be under neutral evolution and they may have functional and/or regulatory roles that have yet to be identified. Here, the distribution pattern, sequence content and location of a novel sequence motif of 'WWWGHTW' were bioinformatically investigated and characterised by constructing a sampling mitogenome dataset of 1889 species from 14 phyla representing the clade of Bilateria. This motif is reverse complementary of the previously described DmTTF binding sequence and found in the nd4L- (X) -trnT gene cluster. This cluster commonly exhibits a strand displacement region and an intergenic region among the bilaterian superphylums, particularly in Ecdysozoa. This motif may be accepted as a substrate providing binding sites for the specific interaction with transcription factors because of (i) its reverse complementarity of previously described DmTTF binding sequence, and (ii) the possession of G and T nucleotides in the fourth and sixth positions, (iii) the bias on T and G nucleotides instead of C and A in the degenerated positions. This suggestion is also supported by the presence of a strand displacement region in the nd4L- (X) -trnT gene cluster, particularly in Ecdysozoa consisting of the most rearranged mitogenomes among the bilaterian superphylums.


Assuntos
Genoma Mitocondrial , Transcrição Gênica , Animais , Fatores de Transcrição/genética , Sítios de Ligação , Nucleotídeos , DNA Intergênico , Filogenia
20.
J Adv Res ; 43: 247-257, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585112

RESUMO

INTRODUCTION: Triterpenoids and saponins have a broad range of pharmacological activities. Unlike most legumes which contain mainly oleanane-type scaffold, Astragalus membranaceus contains not only oleanane-type but also cycloartane-type saponins, for which the biosynthetic pathways are unknown. OBJECTIVES: This work aims to study the function and catalytic mechanism of oxidosqualene cyclases (OSCs), one of the most important enzymes in triterpenoid biosynthesis, in A. membranaceus. METHODS: Two OSC genes, AmOSC2 and AmOSC3, were cloned from A. membranaceus. Their functions were studied by heterologous expression in tobacco and yeast, together with in vivo transient expression and virus-induced gene silencing. Site-directed mutagenesis and molecular docking were used to explain the catalytic mechanism for the conserved motif. RESULTS: AmOSC2 is a ß-amyrin synthase which showed higher expression levels in underground parts. It is associated with the production of ß-amyrin and soyasaponins (oleanane-type) in vivo. AmOSC3 is a cycloartenol synthase expressed in both aerial and underground parts. It is related to the synthesis of astragalosides (cycloartane-type) in the roots, and to the synthesis of cycloartenol as a plant sterol precursor. From AmOSC2/3, conserved triad motifs VFM/VFN were discovered for ß-amyrin/cycloartenol synthases, respectively. The motif is a critical determinant of yield as proved by 10 variants from different OSCs, where the variant containing the conserved motif increased the yield by up to 12.8-fold. Molecular docking and mutagenesis revealed that Val, Phe and Met residues acted together to stabilize the substrate, and the cation-π interactions from Phe played the major role. CONCLUSION: The study provides insights into the biogenic origin of oleanane-type and cycloartane-type triterpenoids in Astragalus membranaceus. The conserved motif offers new opportunities for OSC engineering.


Assuntos
Saponinas , Triterpenos , Astragalus propinquus/metabolismo , Simulação de Acoplamento Molecular , Triterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA