Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am Nat ; 203(1): 43-54, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207142

RESUMO

AbstractPrevious host-parasite coevolutionary theory has focused on understanding the determinants of local adaptation using spatially discrete models. However, these studies fall short of describing patterns of host-parasite local adaptation across spatial scales. In contrast, empirical work demonstrates that patterns of adaptation depend on the scale at which they are measured. Here, we propose a mathematical model of host-parasite coevolution in continuous space that naturally leads to a scale-dependent definition of local adaptation. In agreement with empirical research, we find that patterns of adaptation vary across spatial scales. In some cases, not only the magnitude of local adaptation but also the identity of the locally adapted species will depend on the spatial scale at which measurements are taken. Building on our results, we suggest a way to consistently measure parasite local adaptation when continuous space is the driver of cross-scale variation. We also describe a way to test whether continuous space is driving cross-scale variation. Taken together, our results provide a new perspective that can be used to understand empirical observations previously unexplained by theoretical expectations and deepens our understanding of the mechanics of host-parasite local adaptation.


Assuntos
Parasitos , Animais , Interações Hospedeiro-Parasita , Evolução Biológica , Adaptação Fisiológica
2.
Mol Ecol ; 32(20): 5673-5694, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37694511

RESUMO

With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.


Assuntos
Tecnologia de Impulso Genético , Humanos , Tecnologia de Impulso Genético/métodos , Sistemas CRISPR-Cas
3.
Theor Popul Biol ; 153: 102-110, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442528

RESUMO

Dispersal can enable access to resources in new locations. Consequently, traits that govern dispersal probability and dispersal distance may impact an individual's ability to acquire resources. However, spatial variation in the quality or quantity of resources may mediate potential adaptive benefits of novel dispersal traits. Ecological traits (i.e., those that determine how an individual processes resources) will also, by definition, affect how an individual interacts with the resource landscape. In a spatially heterogeneous environment, this creates potential for evolutionary feedbacks between dispersal-related traits and ecological traits. For example, dispersal may introduce individuals to novel resources, at which point there may be selection for local adaptation of ecological traits. Conversely, an individual's ability to utilize different resource types may determine how dispersal impacts fitness. Here, we develop an individual-based model to investigate co-evolution of dispersal and ecological traits in a landscape where multiple resources vary independently across space. We find that: (1) resource specialists can emerge and tend to evolve dispersal strategies suited to the structure of their preferred resource type and (2) generalists, when they emerge, tend to possess intermediate dispersal strategies. Lastly, we note that the effect of dispersal on the evolution of the ecological trait is weaker than vice versa and, as a result, appreciable heterogeneity in the abundance of resources across a landscape will likely obscure a signal of co-evolution.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Humanos , Dinâmica Populacional , Fenótipo , Ecossistema
4.
Proc Biol Sci ; 289(1972): 20220320, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35414240

RESUMO

Gene drives have shown great promise for suppression of pest populations. These engineered alleles can function by a variety of mechanisms, but the most common is the CRISPR homing drive, which converts wild-type alleles to drive alleles in the germline of heterozygotes. Some potential target species are haplodiploid, in which males develop from unfertilized eggs and thus have only one copy of each chromosome. This prevents drive conversion, a substantial disadvantage compared to diploids where drive conversion can take place in both sexes. Here, we study homing suppression gene drives in haplodiploids and find that a drive targeting a female fertility gene could still be successful. However, such drives are less powerful than in diploids and suffer more from functional resistance alleles. They are substantially more vulnerable to high resistance allele formation in the embryo owing to maternally deposited Cas9 and guide RNA and also to somatic cleavage activity. Examining spatial models where organisms move over a continuous landscape, we find that haplodiploid suppression drives surprisingly perform nearly as well as in diploids, possibly owing to their ability to spread further before inducing strong suppression. Together, these results indicate that gene drive can potentially be used to effectively suppress haplodiploid populations.


Assuntos
Tecnologia de Impulso Genético , Alelos , Sistemas CRISPR-Cas , Feminino , Tecnologia de Impulso Genético/métodos , Células Germinativas , Humanos , Masculino , RNA Guia de Cinetoplastídeos/genética
5.
Am Nat ; 195(1): 115-128, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868532

RESUMO

Evolution can potentially rescue populations from being driven extinct by biological invasions, but predictions for this occurrence are generally lacking. Here I derive theoretical predictions for evolutionary rescue of a resident population experiencing invasion from an introduced competitor that spreads over its introduced range as a traveling spatial wave that displaces residents. I compare the likelihood of evolutionary rescue from invasion for two modes of competition: exploitation and interference competition. I find that, all else equal, evolutionary rescue is less effective at preventing extinction caused by interference-driven invasions than by exploitation-driven invasions. Rescue from interference-driven invasions is, surprisingly, independent of invader dispersal rate or the speed of invasion and is more weakly dependent on range size than in the exploitation-driven case. In contrast, rescue from exploitation-driven invasions strongly depends on range size and is less likely during fast invasions. The results presented here have potential applications for conserving endemic species from nonnative invaders and for ensuring extinction of pests using intentionally introduced biocontrol agents.


Assuntos
Adaptação Biológica , Evolução Biológica , Conservação dos Recursos Naturais , Extinção Biológica , Espécies Introduzidas , Modelos Biológicos , Dinâmica Populacional
6.
Sensors (Basel) ; 17(1)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098773

RESUMO

Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.

7.
Genetics ; 227(4)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38861403

RESUMO

Spatially continuous patterns of genetic differentiation, which are common in nature, are often poorly described by existing population genetic theory or methods that assume either panmixia or discrete, clearly definable populations. There is therefore a need for statistical approaches in population genetics that can accommodate continuous geographic structure, and that ideally use georeferenced individuals as the unit of analysis, rather than populations or subpopulations. In addition, researchers are often interested in describing the diversity of a population distributed continuously in space; this diversity is intimately linked to both the dispersal potential and the population density of the organism. A statistical model that leverages information from patterns of isolation by distance to jointly infer parameters that control local demography (such as Wright's neighborhood size), and the long-term effective size (Ne) of a population would be useful. Here, we introduce such a model that uses individual-level pairwise genetic and geographic distances to infer Wright's neighborhood size and long-term Ne. We demonstrate the utility of our model by applying it to complex, forward-time demographic simulations as well as an empirical dataset of the two-form bumblebee (Bombus bifarius). The model performed well on simulated data relative to alternative approaches and produced reasonable empirical results given the natural history of bumblebees. The resulting inferences provide important insights into the population genetic dynamics of spatially structured populations.


Assuntos
Genética Populacional , Modelos Genéticos , Densidade Demográfica , Animais , Genética Populacional/métodos , Abelhas/genética
8.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945591

RESUMO

Spatially continuous patterns of genetic differentiation, which are common in nature, are often poorly described by existing population genetic theory or methods that assume panmixia or discrete, clearly definable populations. There is therefore a need for statistical approaches in population genetics that can accommodate continuous geographic structure, and that ideally use georeferenced individuals as the unit of analysis, rather than populations or subpopulations. In addition, researchers are often interested describing the diversity of a population distributed continuously in space, and this diversity is intimately linked to the dispersal potential of the organism. A statistical model that leverages information from patterns of isolation-by-distance to jointly infer parameters that control local demography (such as Wright's neighborhood size), and the long-term effective size (Ne) of a population would be useful. Here, we introduce such a model that uses individual-level pairwise genetic and geographic distances to infer Wright's neighborhood size and long-term Ne. We demonstrate the utility of our model by applying it to complex, forward-time demographic simulations as well as an empirical dataset of the Red Sea clownfish (Amphiprion bicinctus). The model performed well on simulated data relative to alternative approaches and produced reasonable empirical results given the natural history of clownfish. The resulting inferences provide important insights into the population genetic dynamics of spatially structure populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA