RESUMO
Cancer, recognized as a primary cause of death worldwide, has profound health implications and incurs a substantial social burden. Numerous efforts have been made to develop cancer treatments, among which anticancer peptides (ACPs) are garnering recognition for their potential applications. While ACP screening is time-consuming and costly, in silico prediction tools provide a way to overcome these challenges. Herein, we present a deep learning model designed to screen ACPs using peptide sequences only. A contrastive learning technique was applied to enhance model performance, yielding better results than a model trained solely on binary classification loss. Furthermore, two independent encoders were employed as a replacement for data augmentation, a technique commonly used in contrastive learning. Our model achieved superior performance on five of six benchmark datasets against previous state-of-the-art models. As prediction tools advance, the potential in peptide-based cancer therapeutics increases, promising a brighter future for oncology research and patient care.
Assuntos
Antineoplásicos , Aprendizado Profundo , Peptídeos , Peptídeos/química , Peptídeos/uso terapêutico , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Biologia Computacional/métodos , Aprendizado de Máquina , AlgoritmosRESUMO
The integration of single-cell RNA sequencing (scRNA-seq) data from multiple experimental batches enables more comprehensive characterizations of cell states. Given that existing methods disregard the structural information between cells and genes, we proposed a structure-preserved scRNA-seq data integration approach using heterogeneous graph neural network (scHetG). By establishing a heterogeneous graph that represents the interactions between multiple batches of cells and genes, and combining a heterogeneous graph neural network with contrastive learning, scHetG concurrently obtained cell and gene embeddings with structural information. A comprehensive assessment covering different species, tissues and scales indicated that scHetG is an efficacious method for eliminating batch effects while preserving the structural information of cells and genes, including batch-specific cell types and cell-type specific gene co-expression patterns.
Assuntos
Redes Neurais de Computação , RNA-Seq , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional/métodos , Algoritmos , Análise da Expressão Gênica de Célula ÚnicaRESUMO
In recent years, the advent of spatial transcriptomics (ST) technology has unlocked unprecedented opportunities for delving into the complexities of gene expression patterns within intricate biological systems. Despite its transformative potential, the prohibitive cost of ST technology remains a significant barrier to its widespread adoption in large-scale studies. An alternative, more cost-effective strategy involves employing artificial intelligence to predict gene expression levels using readily accessible whole-slide images stained with Hematoxylin and Eosin (H&E). However, existing methods have yet to fully capitalize on multimodal information provided by H&E images and ST data with spatial location. In this paper, we propose mclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction. We conceptualize each spot as a "word", integrating its intrinsic features with spatial context through the self-attention mechanism of a Transformer encoder. This integration is further enriched by incorporating image features via contrastive learning, thereby enhancing the predictive capability of our model. We conducted an extensive evaluation of highly variable genes in two breast cancer datasets and a skin squamous cell carcinoma dataset, and the results demonstrate that mclSTExp exhibits superior performance in predicting spatial gene expression. Moreover, mclSTExp has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists. Our source code is available at https://github.com/shizhiceng/mclSTExp.
Assuntos
Perfilação da Expressão Gênica , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Biologia Computacional/métodos , Transcriptoma , Feminino , Aprendizado de Máquina , Regulação Neoplásica da Expressão GênicaRESUMO
MOTIVATION: Accurately predicting molecular metabolic stability is of great significance to drug research and development, ensuring drug safety and effectiveness. Existing deep learning methods, especially graph neural networks, can reveal the molecular structure of drugs and thus efficiently predict the metabolic stability of molecules. However, most of these methods focus on the message passing between adjacent atoms in the molecular graph, ignoring the relationship between bonds. This makes it difficult for these methods to estimate accurate molecular representations, thereby being limited in molecular metabolic stability prediction tasks. RESULTS: We propose the MS-BACL model based on bond graph augmentation technology and contrastive learning strategy, which can efficiently and reliably predict the metabolic stability of molecules. To our knowledge, this is the first time that bond-to-bond relationships in molecular graph structures have been considered in the task of metabolic stability prediction. We build a bond graph based on 'atom-bond-atom', and the model can simultaneously capture the information of atoms and bonds during the message propagation process. This enhances the model's ability to reveal the internal structure of the molecule, thereby improving the structural representation of the molecule. Furthermore, we perform contrastive learning training based on the molecular graph and its bond graph to learn the final molecular representation. Multiple sets of experimental results on public datasets show that the proposed MS-BACL model outperforms the state-of-the-art model. AVAILABILITY AND IMPLEMENTATION: The code and data are publicly available at https://github.com/taowang11/MS.
Assuntos
Redes Neurais de ComputaçãoRESUMO
Cancer is a complex and high-mortality disease regulated by multiple factors. Accurate cancer subtyping is crucial for formulating personalized treatment plans and improving patient survival rates. The underlying mechanisms that drive cancer progression can be comprehensively understood by analyzing multi-omics data. However, the high noise levels in omics data often pose challenges in capturing consistent representations and adequately integrating their information. This paper proposed a novel variational autoencoder-based deep learning model, named Deeply Integrating Latent Consistent Representations (DILCR). Firstly, multiple independent variational autoencoders and contrastive loss functions were designed to separate noise from omics data and capture latent consistent representations. Subsequently, an Attention Deep Integration Network was proposed to integrate consistent representations across different omics levels effectively. Additionally, we introduced the Improved Deep Embedded Clustering algorithm to make integrated variable clustering friendly. The effectiveness of DILCR was evaluated using 10 typical cancer datasets from The Cancer Genome Atlas and compared with 14 state-of-the-art integration methods. The results demonstrated that DILCR effectively captures the consistent representations in omics data and outperforms other integration methods in cancer subtyping. In the Kidney Renal Clear Cell Carcinoma case study, cancer subtypes were identified by DILCR with significant biological significance and interpretability.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias , Humanos , Multiômica , Neoplasias/genética , Carcinoma de Células Renais/genética , Algoritmos , Análise por Conglomerados , Neoplasias Renais/genéticaRESUMO
Antiviral peptides (AVPs) have shown potential in inhibiting viral attachment, preventing viral fusion with host cells and disrupting viral replication due to their unique action mechanisms. They have now become a broad-spectrum, promising antiviral therapy. However, identifying effective AVPs is traditionally slow and costly. This study proposed a new two-stage computational framework for AVP identification. The first stage identifies AVPs from a wide range of peptides, and the second stage recognizes AVPs targeting specific families or viruses. This method integrates contrastive learning and multi-feature fusion strategy, focusing on sequence information and peptide characteristics, significantly enhancing predictive ability and interpretability. The evaluation results of the model show excellent performance, with accuracy of 0.9240 and Matthews correlation coefficient (MCC) score of 0.8482 on the non-AVP independent dataset, and accuracy of 0.9934 and MCC score of 0.9869 on the non-AMP independent dataset. Furthermore, our model can predict antiviral activities of AVPs against six key viral families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight viruses (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). Finally, to facilitate user accessibility, we built a user-friendly web interface deployed at https://awi.cuhk.edu.cn/â¼dbAMP/AVP/.
Assuntos
Antivirais , Biologia Computacional , Peptídeos , Antivirais/farmacologia , Peptídeos/química , Biologia Computacional/métodos , Humanos , Vírus , Aprendizado de Máquina , AlgoritmosRESUMO
Recent advances in spatially resolved transcriptomics (SRT) have brought ever-increasing opportunities to characterize expression landscape in the context of tissue spatiality. Nevertheless, there still exist multiple challenges to accurately detect spatial functional regions in tissue. Here, we present a novel contrastive learning framework, SPAtially Contrastive variational AutoEncoder (SpaCAE), which contrasts transcriptomic signals of each spot and its spatial neighbors to achieve fine-grained tissue structures detection. By employing a graph embedding variational autoencoder and incorporating a deep contrastive strategy, SpaCAE achieves a balance between spatial local information and global information of expression, enabling effective learning of representations with spatial constraints. Particularly, SpaCAE provides a graph deconvolutional decoder to address the smoothing effect of local spatial structure on expression's self-supervised learning, an aspect often overlooked by current graph neural networks. We demonstrated that SpaCAE could achieve effective performance on SRT data generated from multiple technologies for spatial domains identification and data denoising, making it a remarkable tool to obtain novel insights from SRT studies.
Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Redes Neurais de ComputaçãoRESUMO
Dimensionality reduction and clustering are crucial tasks in single-cell RNA sequencing (scRNA-seq) data analysis, treated independently in the current process, hindering their mutual benefits. The latest methods jointly optimize these tasks through deep clustering. However, contrastive learning, with powerful representation capability, can bridge the gap that common deep clustering methods face, which requires pre-defined cluster centers. Therefore, a dual-level contrastive clustering method with nonuniform sampling (nsDCC) is proposed for scRNA-seq data analysis. Dual-level contrastive clustering, which combines instance-level contrast and cluster-level contrast, jointly optimizes dimensionality reduction and clustering. Multi-positive contrastive learning and unit matrix constraint are introduced in instance- and cluster-level contrast, respectively. Furthermore, the attention mechanism is introduced to capture inter-cellular information, which is beneficial for clustering. The nsDCC focuses on important samples at category boundaries and in minority categories by the proposed nearest boundary sparsest density weight assignment algorithm, making it capable of capturing comprehensive characteristics against imbalanced datasets. Experimental results show that nsDCC outperforms the six other state-of-the-art methods on both real and simulated scRNA-seq data, validating its performance on dimensionality reduction and clustering of scRNA-seq data, especially for imbalanced data. Simulation experiments demonstrate that nsDCC is insensitive to "dropout events" in scRNA-seq. Finally, cluster differential expressed gene analysis confirms the meaningfulness of results from nsDCC. In summary, nsDCC is a new way of analyzing and understanding scRNA-seq data.
Assuntos
Algoritmos , RNA-Seq , Análise de Célula Única , Análise de Célula Única/métodos , Análise por Conglomerados , RNA-Seq/métodos , Humanos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Unraveling the intricate network of associations among microRNAs (miRNAs), genes, and diseases is pivotal for deciphering molecular mechanisms, refining disease diagnosis, and crafting targeted therapies. Computational strategies, leveraging link prediction within biological graphs, present a cost-efficient alternative to high-cost empirical assays. However, while plenty of methods excel at predicting specific associations, such as miRNA-disease associations (MDAs), miRNA-target interactions (MTIs), and disease-gene associations (DGAs), a holistic approach harnessing diverse data sources for multifaceted association prediction remains largely unexplored. The limited availability of high-quality data, as vitro experiments to comprehensively confirm associations are often expensive and time-consuming, results in a sparse and noisy heterogeneous graph, hindering an accurate prediction of these complex associations. To address this challenge, we propose a novel framework called Global-local aware Heterogeneous Graph Contrastive Learning (GlaHGCL). GlaHGCL combines global and local contrastive learning to improve node embeddings in the heterogeneous graph. In particular, global contrastive learning enhances the robustness of node embeddings against noise by aligning global representations of the original graph and its augmented counterpart. Local contrastive learning enforces representation consistency between functionally similar or connected nodes across diverse data sources, effectively leveraging data heterogeneity and mitigating the issue of data scarcity. The refined node representations are applied to downstream tasks, such as MDA, MTI, and DGA prediction. Experiments show GlaHGCL outperforming state-of-the-art methods, and case studies further demonstrate its ability to accurately uncover new associations among miRNAs, genes, and diseases. We have made the datasets and source code publicly available at https://github.com/Sue-syx/GlaHGCL.
Assuntos
Biologia Computacional , Redes Reguladoras de Genes , MicroRNAs , MicroRNAs/genética , Humanos , Biologia Computacional/métodos , Aprendizado de Máquina , Algoritmos , Predisposição Genética para DoençaRESUMO
Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics. We propose ACLNDA, an asymmetric graph contrastive learning framework for analyzing heterophilic ncRNA-disease associations. It constructs inter-layer adjacency matrices from the original lncRNA, miRNA, and disease associations, and uses a Top-K intra-layer similarity edges construction approach to form a triple-layer heterogeneous graph. Unlike traditional works, to account for both node attribute features (ncRNA/disease) and node preference features (association), ACLNDA employs an asymmetric yet simple graph contrastive learning framework to maximize one-hop neighborhood context and two-hop similarity, extracting ncRNA-disease features without relying on graph augmentations or homophily assumptions, reducing computational cost while preserving data integrity. Our framework is capable of being applied to a universal range of potential LDA, MDA, and LMI association predictions. Further experimental results demonstrate superior performance to other existing state-of-the-art baseline methods, which shows its potential for providing insights into disease diagnosis and therapeutic target identification. The source code and data of ACLNDA is publicly available at https://github.com/AI4Bread/ACLNDA.
Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Biologia Computacional/métodos , Algoritmos , RNA não Traduzido/genética , MicroRNAs/genética , Aprendizado de Máquina , Software , Predisposição Genética para DoençaRESUMO
Drug repurposing offers a viable strategy for discovering new drugs and therapeutic targets through the analysis of drug-gene interactions. However, traditional experimental methods are plagued by their costliness and inefficiency. Despite graph convolutional network (GCN)-based models' state-of-the-art performance in prediction, their reliance on supervised learning makes them vulnerable to data sparsity, a common challenge in drug discovery, further complicating model development. In this study, we propose SGCLDGA, a novel computational model leveraging graph neural networks and contrastive learning to predict unknown drug-gene associations. SGCLDGA employs GCNs to extract vector representations of drugs and genes from the original bipartite graph. Subsequently, singular value decomposition (SVD) is employed to enhance the graph and generate multiple views. The model performs contrastive learning across these views, optimizing vector representations through a contrastive loss function to better distinguish positive and negative samples. The final step involves utilizing inner product calculations to determine association scores between drugs and genes. Experimental results on the DGIdb4.0 dataset demonstrate SGCLDGA's superior performance compared with six state-of-the-art methods. Ablation studies and case analyses validate the significance of contrastive learning and SVD, highlighting SGCLDGA's potential in discovering new drug-gene associations. The code and dataset for SGCLDGA are freely available at https://github.com/one-melon/SGCLDGA.
Assuntos
Redes Neurais de Computação , Humanos , Reposicionamento de Medicamentos/métodos , Biologia Computacional/métodos , Algoritmos , Software , Descoberta de Drogas/métodos , Aprendizado de MáquinaRESUMO
Spatial transcriptomics provides valuable insights into gene expression within the native tissue context, effectively merging molecular data with spatial information to uncover intricate cellular relationships and tissue organizations. In this context, deciphering cellular spatial domains becomes essential for revealing complex cellular dynamics and tissue structures. However, current methods encounter challenges in seamlessly integrating gene expression data with spatial information, resulting in less informative representations of spots and suboptimal accuracy in spatial domain identification. We introduce stCluster, a novel method that integrates graph contrastive learning with multi-task learning to refine informative representations for spatial transcriptomic data, consequently improving spatial domain identification. stCluster first leverages graph contrastive learning technology to obtain discriminative representations capable of recognizing spatially coherent patterns. Through jointly optimizing multiple tasks, stCluster further fine-tunes the representations to be able to capture complex relationships between gene expression and spatial organization. Benchmarked against six state-of-the-art methods, the experimental results reveal its proficiency in accurately identifying complex spatial domains across various datasets and platforms, spanning tissue, organ, and embryo levels. Moreover, stCluster can effectively denoise the spatial gene expression patterns and enhance the spatial trajectory inference. The source code of stCluster is freely available at https://github.com/hannshu/stCluster.
Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Algoritmos , Humanos , Animais , Software , Aprendizado de MáquinaRESUMO
Functional peptides play crucial roles in various biological processes and hold significant potential in many fields such as drug discovery and biotechnology. Accurately predicting the functions of peptides is essential for understanding their diverse effects and designing peptide-based therapeutics. Here, we propose CELA-MFP, a deep learning framework that incorporates feature Contrastive Enhancement and Label Adaptation for predicting Multi-Functional therapeutic Peptides. CELA-MFP utilizes a protein language model (pLM) to extract features from peptide sequences, which are then fed into a Transformer decoder for function prediction, effectively modeling correlations between different functions. To enhance the representation of each peptide sequence, contrastive learning is employed during training. Experimental results demonstrate that CELA-MFP outperforms state-of-the-art methods on most evaluation metrics for two widely used datasets, MFBP and MFTP. The interpretability of CELA-MFP is demonstrated by visualizing attention patterns in pLM and Transformer decoder. Finally, a user-friendly online server for predicting multi-functional peptides is established as the implementation of the proposed CELA-MFP and can be freely accessed at http://dreamai.cmii.online/CELA-MFP.
Assuntos
Aprendizado Profundo , Peptídeos , Peptídeos/química , Biologia Computacional/métodos , Software , Humanos , Algoritmos , Bases de Dados de ProteínasRESUMO
Substructure-based representation learning has emerged as a powerful approach to featurize complex attributed graphs, with promising results in molecular property prediction (MPP). However, existing MPP methods mainly rely on manually defined rules to extract substructures. It remains an open challenge to adaptively identify meaningful substructures from numerous molecular graphs to accommodate MPP tasks. To this end, this paper proposes Prototype-based cOntrastive Substructure IdentificaTion (POSIT), a self-supervised framework to autonomously discover substructural prototypes across graphs so as to guide end-to-end molecular fragmentation. During pre-training, POSIT emphasizes two key aspects of substructure identification: firstly, it imposes a soft connectivity constraint to encourage the generation of topologically meaningful substructures; secondly, it aligns resultant substructures with derived prototypes through a prototype-substructure contrastive clustering objective, ensuring attribute-based similarity within clusters. In the fine-tuning stage, a cross-scale attention mechanism is designed to integrate substructure-level information to enhance molecular representations. The effectiveness of the POSIT framework is demonstrated by experimental results from diverse real-world datasets, covering both classification and regression tasks. Moreover, visualization analysis validates the consistency of chemical priors with identified substructures. The source code is publicly available at https://github.com/VRPharmer/POSIT.
Assuntos
Algoritmos , Biologia Computacional/métodos , Software , Análise por Conglomerados , Estrutura MolecularRESUMO
Single-cell RNA sequencing (scRNA-seq) offers unprecedented insights into transcriptome-wide gene expression at the single-cell level. Cell clustering has been long established in the analysis of scRNA-seq data to identify the groups of cells with similar expression profiles. However, cell clustering is technically challenging, as raw scRNA-seq data have various analytical issues, including high dimensionality and dropout values. Existing research has developed deep learning models, such as graph machine learning models and contrastive learning-based models, for cell clustering using scRNA-seq data and has summarized the unsupervised learning of cell clustering into a human-interpretable format. While advances in cell clustering have been profound, we are no closer to finding a simple yet effective framework for learning high-quality representations necessary for robust clustering. In this study, we propose scSimGCL, a novel framework based on the graph contrastive learning paradigm for self-supervised pretraining of graph neural networks. This framework facilitates the generation of high-quality representations crucial for cell clustering. Our scSimGCL incorporates cell-cell graph structure and contrastive learning to enhance the performance of cell clustering. Extensive experimental results on simulated and real scRNA-seq datasets suggest the superiority of the proposed scSimGCL. Moreover, clustering assignment analysis confirms the general applicability of scSimGCL, including state-of-the-art clustering algorithms. Further, ablation study and hyperparameter analysis suggest the efficacy of our network architecture with the robustness of decisions in the self-supervised learning setting. The proposed scSimGCL can serve as a robust framework for practitioners developing tools for cell clustering. The source code of scSimGCL is publicly available at https://github.com/zhangzh1328/scSimGCL.
Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Análise por Conglomerados , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Algoritmos , Aprendizado de Máquina , Biologia Computacional/métodos , Redes Neurais de Computação , Perfilação da Expressão Gênica/métodos , Software , Transcriptoma , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Recent advancements in image classification have demonstrated that contrastive learning (CL) can aid in further learning tasks by acquiring good feature representation from a limited number of data samples. In this paper, we applied CL to tumor transcriptomes and clinical data to learn feature representations in a low-dimensional space. We then utilized these learned features to train a classifier to categorize tumors into a high- or low-risk group of recurrence. Using data from The Cancer Genome Atlas (TCGA), we demonstrated that CL can significantly improve classification accuracy. Specifically, our CL-based classifiers achieved an area under the receiver operating characteristic curve (AUC) greater than 0.8 for 14 types of cancer, and an AUC greater than 0.9 for 3 types of cancer. We also developed CL-based Cox (CLCox) models for predicting cancer prognosis. Our CLCox models trained with the TCGA data outperformed existing methods significantly in predicting the prognosis of 19 types of cancer under consideration. The performance of CLCox models and CL-based classifiers trained with TCGA lung and prostate cancer data were validated using the data from two independent cohorts. We also show that the CLCox model trained with the whole transcriptome significantly outperforms the Cox model trained with the 16 genes of Oncotype DX that is in clinical use for breast cancer patients. The trained models and the Python codes are publicly accessible and provide a valuable resource that will potentially find clinical applications for many types of cancer.
Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Prognóstico , Neoplasias/genética , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Curva ROC , Biologia Computacional/métodos , Masculino , Biomarcadores Tumorais/genéticaRESUMO
Understanding the genetic basis of disease is a fundamental aspect of medical research, as genes are the classic units of heredity and play a crucial role in biological function. Identifying associations between genes and diseases is critical for diagnosis, prevention, prognosis, and drug development. Genes that encode proteins with similar sequences are often implicated in related diseases, as proteins causing identical or similar diseases tend to show limited variation in their sequences. Predicting gene-disease association (GDA) requires time-consuming and expensive experiments on a large number of potential candidate genes. Although methods have been proposed to predict associations between genes and diseases using traditional machine learning algorithms and graph neural networks, these approaches struggle to capture the deep semantic information within the genes and diseases and are dependent on training data. To alleviate this issue, we propose a novel GDA prediction model named FusionGDA, which utilizes a pre-training phase with a fusion module to enrich the gene and disease semantic representations encoded by pre-trained language models. Multi-modal representations are generated by the fusion module, which includes rich semantic information about two heterogeneous biomedical entities: protein sequences and disease descriptions. Subsequently, the pooling aggregation strategy is adopted to compress the dimensions of the multi-modal representation. In addition, FusionGDA employs a pre-training phase leveraging a contrastive learning loss to extract potential gene and disease features by training on a large public GDA dataset. To rigorously evaluate the effectiveness of the FusionGDA model, we conduct comprehensive experiments on five datasets and compare our proposed model with five competitive baseline models on the DisGeNet-Eval dataset. Notably, our case study further demonstrates the ability of FusionGDA to discover hidden associations effectively. The complete code and datasets of our experiments are available at https://github.com/ZhaohanM/FusionGDA.
Assuntos
Aprendizado de Máquina , Humanos , Biologia Computacional/métodos , Predisposição Genética para Doença , Semântica , Algoritmos , Estudos de Associação Genética , Redes Neurais de ComputaçãoRESUMO
The prediction of metabolite-protein interactions (MPIs) plays an important role in plant basic life functions. Compared with the traditional experimental methods and the high-throughput genomics methods using statistical correlation, applying heterogeneous graph neural networks to the prediction of MPIs in plants can reduce the cost of manpower, resources, and time. However, to the best of our knowledge, applying heterogeneous graph neural networks to the prediction of MPIs in plants still remains under-explored. In this work, we propose a novel model named heterogeneous neighbor contrastive graph attention network (HNCGAT), for the prediction of MPIs in Arabidopsis. The HNCGAT employs the type-specific attention-based neighborhood aggregation mechanism to learn node embeddings of proteins, metabolites, and functional-annotations, and designs a novel heterogeneous neighbor contrastive learning framework to preserve heterogeneous network topological structures. Extensive experimental results and ablation study demonstrate the effectiveness of the HNCGAT model for MPI prediction. In addition, a case study on our MPI prediction results supports that the HNCGAT model can effectively predict the potential MPIs in plant.
Assuntos
Arabidopsis , Redes Neurais de Computação , Arabidopsis/genética , Arabidopsis/metabolismo , Algoritmos , Biologia Computacional/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Trajectory inference is a crucial task in single-cell RNA-sequencing downstream analysis, which can reveal the dynamic processes of biological development, including cell differentiation. Dimensionality reduction is an important step in the trajectory inference process. However, most existing trajectory methods rely on cell features derived from traditional dimensionality reduction methods, such as principal component analysis and uniform manifold approximation and projection. These methods are not specifically designed for trajectory inference and fail to fully leverage prior information from upstream analysis, limiting their performance. Here, we introduce scCRT, a novel dimensionality reduction model for trajectory inference. In order to utilize prior information to learn accurate cells representation, scCRT integrates two feature learning components: a cell-level pairwise module and a cluster-level contrastive module. The cell-level module focuses on learning accurate cell representations in a reduced-dimensionality space while maintaining the cell-cell positional relationships in the original space. The cluster-level contrastive module uses prior cell state information to aggregate similar cells, preventing excessive dispersion in the low-dimensional space. Experimental findings from 54 real and 81 synthetic datasets, totaling 135 datasets, highlighted the superior performance of scCRT compared with commonly used trajectory inference methods. Additionally, an ablation study revealed that both cell-level and cluster-level modules enhance the model's ability to learn accurate cell features, facilitating cell lineage inference. The source code of scCRT is available at https://github.com/yuchen21-web/scCRT-for-scRNA-seq.
Assuntos
Algoritmos , Análise da Expressão Gênica de Célula Única , Biologia Computacional/métodos , RNA-Seq/métodos , Análise da Expressão Gênica de Célula Única/métodos , SoftwareRESUMO
Effective clustering of T-cell receptor (TCR) sequences could be used to predict their antigen-specificities. TCRs with highly dissimilar sequences can bind to the same antigen, thus making their clustering into a common antigen group a central challenge. Here, we develop TouCAN, a method that relies on contrastive learning and pretrained protein language models to perform TCR sequence clustering and antigen-specificity predictions. Following training, TouCAN demonstrates the ability to cluster highly dissimilar TCRs into common antigen groups. Additionally, TouCAN demonstrates TCR clustering performance and antigen-specificity predictions comparable to other leading methods in the field.