Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 18(20): e2108094, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35434925

RESUMO

Projecting a cost-effective and highly efficient electrocatalyst for the oxygen reaction reduction (ORR) counts a great deal for Zn-air batteries. Herein, a hierarchical core-shell ORR catalyst (Co2 N/CoP@PNCNTs) is developed by embedding cobalt phosphides and/or cobalt nitrides as the core into N, P-doped carbon nanotubes (PNCNTs) as the shell via one-step carbonization, nitridation, and phosphorization of pyrolyzing Co-MOF precursor. The globally N, P-doped structure of Co2 N/CoP@PNCNTs demonstrates an outstanding electrocatalytic activity in the alkaline solution with the onset and half-wave potentials of 1.07 and 0.85 V respectively. Moreover, a Zn-air battery assembled from Co2 N/CoP@PNCNTs as the air cathode delivers an open circuit potential of 1.49 V, a maximum power density of 151.1 mW cm-2 and a specific capacity of 823.8 mAh kg-1 . It is reflected that Co2 N/CoP@PNCNTs provides a long-term durability with a slight decline of 15 h in the chronoamperometry measurement and an excellent charge-discharge stability with negligible voltage decay for 150 h at 10 mA cm-2 in Zn-air batteries. The results reveal that Co2 N/CoP@PNCNTs has superiority over most Co-Nx -C or Cox P@C catalysts reported so far. The excellent catalytic properties and stability of Co2 N/CoP@PNCNTs derive from synergistic effects between Co2 N/CoP and mesoporous N, P-doped carbon nanotubes.

2.
Small ; 17(38): e2101856, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390182

RESUMO

Developing cost-efficient multifunctional electrocatalysts is highly critical for the integrated electrochemical energy-conversion systems such as water electrolysis based on hydrogen/oxygen evolution reactions (HER/OER) and metal-air batteries based on OER/oxygen reduction reactions (ORR). The core-shell structured materials with transition metal phosphide as the core and nitrogen-doped carbon (NC) as the shell have been known as promising HER electrocatalysts. However, their oxygen-related electrocatalytic activities still remain unsatisfactory, which severely limits their further applications. Herein an effective strategy to improve the core and shell performances of core-shell Co2 P@NC electrocatalysts through secondary metal (e.g., Fe, Ni, Mo, Al, Mn) doping (termed M-Co2 P@M-N-C) is reported. The as-synthesized M-Co2 P@M-N-C electrocatalysts show multifunctional HER/OER/ORR activities and good integrated capabilities for overall water splitting and Zn-air batteries. Among the M-Co2 P@M-N-C catalysts, Fe-Co2 P@Fe-N-C electrocatalyst exhibits the best catalytic activities, which is closely related to the configuration of highly active species (Fe-doping Co2 P core and Fe-N-C shell) and their subtle synergy, and a stable carbon shell for outstanding durability. Combination of electrochemical-based in situ Fourier transform infrared spectroscopy with extensive experimental investigation provides deep insights into the origin of the activity and the underlying electrocatalytic mechanisms at the molecular level.

3.
J Colloid Interface Sci ; 606(Pt 2): 1031-1041, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487926

RESUMO

The development of sensitive and selective sensors using facile and low-cost methods for detecting neurotransmitter molecules is a critical factor in the health care system in regard to early diagnosis. In this research, an electrocatalyst derived from Mo,Zn dual-doped CuxO nanocrystals-based layer coating over one-dimensional copper nanowire arrays (Mo,Zn-CuxO/CuNWs) was successfully designed using a facile electrodeposition approach and used as an electrochemical sensor for non-enzymatic dopamine (DA) neurotransmitter detection. The synergistic effect caused by the dual-doping effect along with its excellent conductivity produced a large electroactive surface area and an improved hetero-charge transfer, thereby boosting DA sensing ability with a low limit detection of 0.32 µM, wide-range of detection (0.5 µM - 3.9 mM), long-term stability (5 weeks), and high selectivity in phosphate buffer solution (pH 7.4). Also, the sensor accurately determined DA in real blood serum-spiked solutions. The achieved results evidenced that the Mo,Zn-CuxO/CuNWs derived sensor is highly suitable for DA detection. Therefore, it also opens new windows for the development of low-cost, accurate, high-performance, and stable sensors for other neurotransmitter sensing for the purposes of better health care and early diagnosis.


Assuntos
Técnicas Eletroquímicas , Nanopartículas , Cobre , Neurotransmissores , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA