Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38063851

RESUMO

Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.


Assuntos
Síndrome de Cornélia de Lange , Fatores de Transcrição , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Síndrome de Cornélia de Lange/genética , Crista Neural/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteogênese , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(18): e2201029119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476527

RESUMO

Cornelia de Lange syndrome (CdLS) is a developmental multisystem disorder frequently associated with mutations in NIPBL. CdLS is thought to arise from developmental gene regulation defects, but how NIPBL mutations cause these is unknown. Here we show that several NIPBL mutations impair the DNA loop extrusion activity of cohesin. Because this activity is required for the formation of chromatin loops and topologically associating domains, which have important roles in gene regulation, our results suggest that defects in cohesin-mediated loop extrusion contribute to the etiology of CdLS by altering interactions between developmental genes and their enhancers.


Assuntos
Síndrome de Cornélia de Lange , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA/genética , Síndrome de Cornélia de Lange/genética , Humanos , Mutação , Coesinas
3.
Am J Med Genet A ; 194(5): e63512, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135466

RESUMO

Post-zygotic mosaicism is a well-known biological phenomenon characterized by the presence of genetically distinct lineages of cells in the same individual due to post-zygotic de novo mutational events. It has been identified in about 13% of Cornelia de Lange (CdLS) syndrome patients with a molecular diagnosis, an unusual high frequency. Here, we report the case of a patient affected by classic CdLS harboring post-zygotic mosaicism for two different likely pathogenic variants at the same nucleotide position in NIPBL. Double somatic mosaicism has never been reported in CdLS and only rarely recognized in human diseases. Possible pathogenetic mechanisms are discussed.


Assuntos
Síndrome de Cornélia de Lange , Humanos , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Proteínas de Ciclo Celular/genética , Mosaicismo , Fenótipo
4.
Am J Med Genet A ; 194(9): e63641, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725242

RESUMO

Next-generation phenotyping (NGP) can be used to compute the similarity of dysmorphic patients to known syndromic diseases. So far, the technology has been evaluated in variant prioritization and classification, providing evidence for pathogenicity if the phenotype matched with other patients with a confirmed molecular diagnosis. In a Nigerian cohort of individuals with facial dysmorphism, we used the NGP tool GestaltMatcher to screen portraits prior to genetic testing and subjected individuals with high similarity scores to exome sequencing (ES). Here, we report on two individuals with global developmental delay, pulmonary artery stenosis, and genital and limb malformations for whom GestaltMatcher yielded Cornelia de Lange syndrome (CdLS) as the top hit. ES revealed a known pathogenic nonsense variant, NM_133433.4: c.598C>T; p.(Gln200*), as well as a novel frameshift variant c.7948dup; p.(Ile2650Asnfs*11) in NIPBL. Our results suggest that NGP can be used as a screening tool and thresholds could be defined for achieving high diagnostic yields in ES. Training the artificial intelligence (AI) with additional cases of the same ethnicity might further increase the positive predictive value of GestaltMatcher.


Assuntos
Síndrome de Cornélia de Lange , Fenótipo , Humanos , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/patologia , Masculino , Feminino , Criança , Nigéria , Pré-Escolar , Proteínas de Ciclo Celular/genética , Sequenciamento do Exoma , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Lactente
5.
Am J Med Genet A ; 194(7): e63577, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38421079

RESUMO

SMC1A epilepsy syndrome or developmental and epileptic encephalopathy-85 with or without midline brain defects (DEE85, OMIM #301044) is an X-linked neurologic disorder associated with mutations of the SMC1A gene, which is also responsible for about 5% of patients affected by Cornelia de Lange syndrome spectrum (CdLS). Only described in female patients, SMC1A epilepsy syndrome is characterized by the onset of severe refractory epileptic seizures in the first year of life, global developmental delay, a variable degree of intellectual disability, and dysmorphic facial features not typical of CdLS. This was a descriptive observational study for the largest international cohort with this specific disorder. The main goal of this study was to improve the knowledge of the natural history of this phenotype with particular attention to the psychomotor development and the epilepsy data. The analyzed cohort shows normal prenatal growth with the subsequent development of postnatal microcephaly. The incidence of neonatal problems (seizures and respiratory compromise) is considerable (51.4%). There is a significant prevalence of central nervous system (20%) and cardiovascular malformations (20%). Motor skills are generally delayed. The presence of drug-resistant epilepsy is confirmed; the therapeutic role of a ketogenic diet is still uncertain. The significant regression of previously acquired skills following the onset of seizures has been observed. Facial dysmorphisms are variable and no patient shows a classic CdLS phenotype. To sum up, SMC1A variants caused drug-resistant epilepsy in these patients, more than two-thirds of whom were shown to progress to developmental and epileptic encephalopathy. The SMC1A gene variants are all different from each other (apart from a couple of monozygotic twins), demonstrating the absence of a mutational hotspot in the SMC1A gene. Owing to the absence of phenotypic specificity, whole-exome sequencing is currently the diagnostic gold standard.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Mutação , Humanos , Feminino , Masculino , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Pré-Escolar , Lactente , Mutação/genética , Criança , Epilepsia/genética , Epilepsia/epidemiologia , Epilepsia/patologia , Epilepsia/diagnóstico , Fenótipo , Estudos de Coortes , Adolescente , Recém-Nascido , Síndromes Epilépticas/genética , Síndromes Epilépticas/epidemiologia , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/epidemiologia , Síndrome de Cornélia de Lange/patologia
6.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884729

RESUMO

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Assuntos
Comunicação Interventricular , Humanos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Comunicação Interventricular/genética , Mutação , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279279

RESUMO

The human STAG2 protein is an essential component of the cohesin complex involved in cellular processes of gene expression, DNA repair, and genomic integrity. Somatic mutations in the STAG2 sequence have been associated with various types of cancer, while congenital variants have been linked to developmental disorders such as Mullegama-Klein-Martinez syndrome, X-linked holoprosencephaly-13, and Cornelia de Lange syndrome. In the cohesin complex, the direct interaction of STAG2 with DNA and with NIPBL, RAD21, and CTCF proteins has been described. The function of STAG2 within the complex is still unknown, but it is related to its DNA binding capacity and is modulated by its binding to the other three proteins. Every missense variant described for STAG2 is located in regions involved in one of these interactions. In the present work, we model the structure of 12 missense variants described for STAG2, as well as two other variants of NIPBl and two of RAD21 located at STAG2 interaction zone, and then analyze their behavior through molecular dynamic simulations, comparing them with the same simulation of the wild-type protein. This will allow the effects of variants to be rationalized at the atomic level and provide clues as to how STAG2 functions in the cohesin complex.


Assuntos
Coesinas , Deficiências do Desenvolvimento , Humanos , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Coesinas/genética , Síndrome de Cornélia de Lange/genética , DNA , Mutação , Mutação de Sentido Incorreto , Deficiências do Desenvolvimento/genética
8.
Am J Med Genet A ; 191(6): 1586-1592, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843271

RESUMO

Cornelia de Lange syndrome (CdLS) is a rare multisystem congenital neurodevelopmental disorder (NDD) characterized by distinctive facial anomalies, short stature, developmental delay, hirsutism, gastrointestinal abnormalities and upper limb reduction defects. CdLS syndrome is associated with causative variants in genes encoding for the cohesin complex, a cellular machinery involved in chromatid pairing, DNA repair and gene-expression regulation. In this report, we describe a familial case of a syndromic presentation in a 4-year-old patient (P1) and in his mother (P2). Trio-based Whole Exome Sequencing (WES) performed on P1 was first negative. Since his phenotypic evolution during the follow-up was reminiscent of the CdLS spectrum, a reanalysis of WES data, focused on CdLS-related genes, was requested. Although no alterations in those genes was detected, we identified the likely pathogenetic variant c.40G > A (p.Glu14Lys) in the PHIP gene, in the meanwhile associated with Chung-Jansen syndrome. Reverse phenotyping carried out in both patients confirmed the molecular diagnosis. CHUJANS belongs to NDDs, featuring developmental delay, mild-to-moderate intellectual disability, behavioral problems, obesity and facial dysmorphisms. Moreover, as here described, CHUJANS shows a significant overlap with the CdLS spectrum, with specific regard to facial gestalt. On the basis of our findings, we suggest to include PHIP among genes routinely analyzed in patients belonging to the CdLS spectrum.


Assuntos
Síndrome de Cornélia de Lange , Deficiência Intelectual , Humanos , Pré-Escolar , Proteínas de Ciclo Celular/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Fenótipo , Regulação da Expressão Gênica , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética
9.
Am J Med Genet A ; 191(8): 2113-2131, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37377026

RESUMO

Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.


Assuntos
Síndrome de Cornélia de Lange , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/genética , Fenótipo , Mutação , Genômica , Estudos de Associação Genética , Fatores de Elongação da Transcrição/genética , Histona Desacetilases/genética , Proteínas Repressoras/genética
10.
Genomics ; 114(5): 110468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36041635

RESUMO

Recent studies suggest that transcript isoforms significantly overlap (approximately 60%) between brain tissue and Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs). Interestingly, 14 cohesion-related genes with variants that cause Cornelia de Lange Syndrome (CdLS) are highly expressed in the brain and LCLs. In this context, we first performed RNA sequencing of LCLs from 22 solved (with pathogenic variants) and 19 unsolved (with no confirmed variants) CdLS cases. Next, an RNA sequencing pipeline was developed using solved cases with two different methods: short variant analysis (for single-nucleotide and indel variants) and aberrant splicing detection analysis. Then, 19 unsolved cases were subsequently applied to our pipeline, and four pathogenic variants in NIPBL (one inframe deletion and three intronic variants) were newly identified. Two of three intronic variants were located at Alu elements in deep-intronic regions, creating cryptic exons. RNA sequencing with LCLs was useful for identifying hidden variants in exome-negative cases.


Assuntos
Síndrome de Cornélia de Lange , Infecções por Vírus Epstein-Barr , Proteínas de Ciclo Celular/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Herpesvirus Humano 4/genética , Humanos , Nucleotídeos , Fenótipo , Isoformas de Proteínas/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA