Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354704

RESUMO

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Assuntos
Antígenos CD28 , Redes Reguladoras de Genes , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transdução de Sinais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismo , Linfócitos T CD8-Positivos
2.
EMBO Rep ; 25(8): 3456-3485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877170

RESUMO

T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , NF-kappa B , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores OX40/metabolismo , Receptores OX40/genética , Ativação Linfocitária/imunologia , Ativação Linfocitária/genética , Camundongos Knockout , Humanos , Camundongos Endogâmicos C57BL , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Interferon gama/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide
3.
Am J Transplant ; 24(8): 1369-1381, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552961

RESUMO

Recently published studies in both murine models and a meta-analysis of non-human primate renal transplant studies showed that anti-CD154 reagents conferred a significant survival advantage over CD40 blockers in both animal models and across multiple organs. Here we sought to compare the induction of donor-reactive forkhead box P3+-induced regulatory T cells (Foxp3+ iTreg) in mice treated with anti-CD154 versus anti-CD40 monoclonal antibodies (mAbs). Results indicated that while treatment with anti-CD154 mAb resulted in a significant increase in the frequency of donor-reactive CD4+ Foxp3+ iTreg following transplantation, treatment with anti-CD40 or Cd40 deficiency failed to recapitulate this result. Because we recently identified CD11b as an alternate receptor for CD154 during alloimmunity, we interrogated the role of CD154:CD11b interactions in the generation of Foxp3+ iTreg and found that blockade of CD11b in Cd40-/- recipients resulted in increased donor-reactive Foxp3+ iTreg as compared with CD40 deficiency alone. Mechanistically, CD154:CD11b inhibition decreased interleukin (IL)-1ß from CD11b+ and CD11c+ dendritic cells, and blockade of IL-1ß synergized with CD40 deficiency to promote Foxp3+ iTreg induction and prolong allograft survival. Taken together, these data provide a mechanistic basis for the observed inferiority of anti-CD40 blockers as compared with anti-CD154 mAb and illuminate an IL-1ß-dependent mechanism by which CD154:CD11b interactions prevent the generation of donor-reactive Foxp3+ iTreg during transplantation.


Assuntos
Antígenos CD40 , Ligante de CD40 , Fatores de Transcrição Forkhead , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Doadores de Tecidos , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Antígenos CD40/imunologia , Antígenos CD40/antagonistas & inibidores , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/imunologia , Camundongos Knockout , Anticorpos Monoclonais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Camundongos Endogâmicos BALB C , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Rim
4.
Clin Immunol ; 261: 109927, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38331302

RESUMO

OBJECTIVE: The absence of CD28 is a feature of antigen-experienced, highly differentiated and aged T cells. The pathogenicity of CD28null T cells remains elusive in primary Sjögren's syndrome (pSS). Therefore, this study was performed to explore the characteristics of CD28null T cells in both peripheral blood and minor salivary glands (MSGs) of pSS patients. METHODS: pSS patients and paired healthy controls (HCs) were enrolled. The phenotype of peripheral CD28null T cells was analyzed using flow cytometry. In vitro functional assays were performed to evaluate the cytotoxic and proinflammatory effects of peripheral CD28null T cells. In addition, polychromatic immunofluorescence staining was performed to investigate infiltrating CD28null T cells in MSGs. RESULTS: A significant expansion of peripheral CD28null T cells was observed in pSS patients compared with HCs (p < 0.001), which were primarily CD8+CD28null T cells. The proportion of peripheral CD8+CD28null T cells moderately correlated with the erythrocyte sedimentation rate (r = 0.57, p < 0.01) and IgG levels (r = 0.44, p < 0.01). Peripheral CD28null T cells had stronger capacities to secrete granzyme B and perforin, but comparable capacities to secrete IFN-γ and TNF-α than their CD28+ counterparts. An abundant amount of cytotoxic and pro-inflammatory CD28null T cells was also found in MSGs. Moreover, a high expression of the chemokine receptor CXCR3 was found on peripheral and tissue-resident CD28null T cells, with its ligands CXCL9/10 abundantly present in MSGs. CONCLUSION: Increasing CD28null T cells with strong cytotoxicity and proinflammatory effects were observed in both peripheral blood and MSGs from pSS patients. The precise mechanism of action and migration still needs further investigation.


Assuntos
Antineoplásicos , Síndrome de Sjogren , Humanos , Idoso , Linfócitos T/metabolismo , Antígenos CD28 , Síndrome de Sjogren/genética , Glândulas Salivares Menores/metabolismo
5.
Cytokine ; 176: 156540, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359559

RESUMO

Death Receptor 3 (DR3) is a cytokine receptor of the Tumor Necrosis Factor receptor superfamily that plays a multifaceted role in both innate and adaptive immunity. Based on the death domain motif in its cytosolic tail, DR3 had been proposed and functionally affirmed as a trigger of apoptosis. Further studies, however, also revealed roles of DR3 in other cellular pathways, including inflammation, survival, and proliferation. DR3 is expressed in various cell types, including T cells, B cells, innate lymphocytes, myeloid cells, fibroblasts, and even outside the immune system. Because DR3 is mainly expressed on T cells, DR3-mediated immune perturbations leading to autoimmunity and other diseases were mostly attributed to DR3 activation of T cells. However, which T cell subset and what T effector functions are controlled by DR3 to drive these processes remain incompletely understood. DR3 engagement was previously found to alter CD4 T helper subset differentiation, expand the Foxp3+ Treg cell pool, and maintain intraepithelial γδ T cells in the gut. Recent studies further unveiled a previously unacknowledged aspect of DR3 in regulating innate-like invariant NKT (iNKT) cell activation, expanding the scope of DR3-mediated immunity in T lineage cells. Importantly, in the context of iNKT cells, DR3 ligation exerted costimulatory effects in agonistic TCR signaling, unveiling a new regulatory framework in T cell activation and proliferation. The current review is aimed at summarizing such recent findings on the role of DR3 on conventional T cells and innate-like T cells and discussing them in the context of immunopathogenesis.


Assuntos
Receptores de Citocinas , Membro 25 de Receptores de Fatores de Necrose Tumoral , Humanos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Inflamação/metabolismo , Subpopulações de Linfócitos T/metabolismo
6.
Clin Transplant ; 38(2): e15249, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38369810

RESUMO

BACKGROUND: Desensitization is one of the strategies to reduce antibodies and facilitate heart transplantation in highly sensitized patients. We describe our center's desensitization experience with combination of plasma cell (PC) depletion therapy (with proteasome inhibitor or daratumumab) and costimulation blockade (with belatacept). METHODS: We reviewed five highly sensitized patients who underwent desensitization therapy with plasma cell depletion and costimulation blockade. We evaluated the response to therapy by measuring the changes in cPRA, average MFI, and number of positive beads > 5000MFI. RESULTS: Five patients, mean age of 56 (37-66) years with average cPRA of 98% at 5000 MFI underwent desensitization therapy. After desensitization, mean cPRA decreased from 98% to 70% (p = .09), average number of beads > 5000 MFI decreased from 59 to 37 (p = .15), and average MFI of beads > 5000 MFI decreased from 16713 to 13074 (p = .26). CONCLUSION: Combined PC depletion and CoB could be a reasonable strategy for sustained reduction in antibodies in highly sensitized patients being listed for heart transplantation.


Assuntos
Transplante de Coração , Plasmócitos , Humanos , Pessoa de Meia-Idade , Abatacepte/uso terapêutico , Abatacepte/farmacologia , Dessensibilização Imunológica , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Antígenos HLA , Isoanticorpos , Inibidores de Proteassoma , Adulto , Idoso
7.
Virus Genes ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102085

RESUMO

DENV infection outcomes depend on the host's variable expression of immune receptors and mediators, leading to either resolution or exacerbation. While the NS3 protein is known to induce robust immune responses, the specific impact of its protease region epitopes remains unclear. This study investigated the effect of recombinant NS3 protease region proteins from all four DENV serotypes on splenocyte activation in BALB/c mice (n = 5/group). Mice were immunized with each protein, and their splenocytes were subsequently stimulated with homologous antigens. We measured the expression of costimulatory molecules (CD28, CD80, CD86, CD152) by flow cytometry, along with IL-2 production, CD25 expression, and examined the antigen-specific activation of CD4 + and CD8 + T cells. Additionally, the expression of IL-1, IL-10, and TGF-ß1 in splenocytes from immunized animals was assessed. Apoptosis was evaluated using Annexin V/PI staining and DNA fragmentation analysis. Stimulation of splenocytes from immunized mice triggered apoptosis (phosphatidylserine exposure and caspase 3/7 activation) and increased costimulatory molecule expression, particularly CD152. Low IL-2 production and low CD25 expression, as well as sustained expression of the IL-10 gene. These results suggest that these molecules might be involved in mechanisms by which the NS3 protein contributes to viral persistence and disease pathogenesis.

8.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542109

RESUMO

The combination of signals from the T-cell receptor (TCR) and co-stimulatory molecules triggers transcriptional programs that lead to proliferation, cytokine secretion, and effector functions. We compared the impact of engaging the TCR with CD28 and/or CD43 at different time points relative to TCR engagement on T-cell function. TCR and CD43 simultaneous engagement resulted in higher CD69 and PD-1 expression levels than in TCR and CD28-stimulated cells, with a cytokine signature of mostly effector, inflammatory, and regulatory cytokines, while TCR and CD28-activated cells secreted all categories of cytokines, including stimulatory cytokines. Furthermore, the timing of CD43 engagement relative to TCR ligation, and to a lesser degree that of CD28, resulted in distinct patterns of expression of cytokines, chemokines, and growth factors. Complete cell activation was observed when CD28 or CD43 were engaged simultaneously with or before the TCR, but ligating the TCR before CD43 or CD28 failed to complete a cell activation program regarding cytokine secretion. As the order in which CD43 or CD28 and the TCR were engaged resulted in different combinations of cytokines that shape distinct T-cell immune programs, we analyzed their upstream sequences to assess whether the combinations of cytokines were associated with different sets of regulatory elements. We found that the order in which the TCR and CD28 or CD43 are engaged predicts the recruitment of specific sets of chromatin remodelers and TFSS, which ultimately regulate T-cell polarization and plasticity. Our data underscore that the combination of co-stimulatory molecules and the time when they are engaged relative to the TCR can change the cell differentiation program.


Assuntos
Antígenos CD28 , Receptores de Antígenos de Linfócitos T , Antígenos CD28/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Ativação Linfocitária , Diferenciação Celular , Citocinas/metabolismo
9.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341270

RESUMO

Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Linfócitos T Reguladores , Humanos , Antígenos CD28 , Linfócitos , Timo
10.
JACC Basic Transl Sci ; 9(6): 827-843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39070270

RESUMO

The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.

11.
J Clin Invest ; 134(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349740

RESUMO

Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhanced spontaneous priming of thymus-derived (FOXP3+Helios+) Tregs by the tumor. These Tregs acquired an effector phenotype, populated the tumor, and impeded tumor control by a simultaneous, RT-induced CD8+ cytotoxic T cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, the CD28 ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector Treg response, enriched the tumor-draining lymph node migratory conventional DCs that were positive for PD-L1 and CD80 (PD-L1+CD80+), and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1 enhanced intratumoral CTL accumulation, and the combination significantly increased RT-induced tumor regression and OS. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since these interventions drive Treg responses in this context. However, combining RT with CD86 blockade may promote the control of such tumors by enabling a CTL response.


Assuntos
Antígenos CD28 , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-1/genética , Antígeno B7-H1 , Antígeno CTLA-4/genética , Modelos Animais de Doenças , Receptor de Morte Celular Programada 1/genética , Linfócitos T Reguladores
12.
Artigo em Inglês | MEDLINE | ID: mdl-39097214

RESUMO

BACKGROUND: Xenotransplantation has made significant advances recently using pigs genetically engineered to remove carbohydrate antigens, either alone or with addition of various human complement, coagulation, and anti-inflammatory 'transgenes'. Here we evaluated results associated with gene-edited (GE) pig hearts transplanted in baboons using an established costimulation-based immunosuppressive regimen and a cold-perfused graft preservation technique. METHODS: Eight baboons received heterotopic abdominal heart transplants from 3-GE (GalKO.ß4GalNT2KO.hCD55, n=3), 9-GE (GalKO.ß4GalNT2KO.GHRKO.hCD46.hCD55. TBM.EPCR.hCD47.HO-1, n=3) or 10-G (9-GE+CMAHKO, n=2) pigs using Steen's cold continuous perfusion for ischemia minimization. Immunosuppression (IS) included induction with anti-thymocyte globulin and αCD20, ongoing αCD154, MMF, and tapered corticosteroid. RESULTS: All three 3-GE grafts functioned well initially, but failed within 5 days. One 9-GE graft was lost intraoperatively due to a technical issue and another was lost at POD 13 due to antibody mediated rejection (AMR) in a baboon with a strongly positive pre-operative cross-match. One 10-GE heart failed at POD113 with combined cellular and antibody mediated rejection. One 9-GE and one 10-GE hearts had preserved graft function with normal myocardium on protocol biopsies, but exhibited slowly progressive graft hypertrophy until elective necropsy at POD393 and 243 respectively. Elevated levels of IL-6, MCP-1, C-reactive protein, and human thrombomodulin were variably associated with conditioning, the transplant procedure, and clinically significant postoperative events. CONCLUSION: Relative to reference genetics without thrombo-regulatory and anti-inflammatory gene expression, 9- or 10-GE pig hearts exhibit promising performance in the context of a clinically applicable regimen including ischemia minimization and αCD154-based IS, justifying further evaluation in an orthotopic model.

13.
Transpl Immunol ; 82: 101976, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38199271

RESUMO

Belatacept, a modified form of CTLA-Ig that blocks CD28-mediated co-stimulation of T cells, is an immune-suppressant that can be used as an alternative to calcineurin inhibitors (CNIs). In kidney transplant recipients, belatacept has been associated with improved renal function and reduced cardiovascular toxicity. Monocytes as well as T-lymphocytes play causal roles in the pathophysiology of atherosclerotic disease. We hypothesized that the beneficial impact of the use of belatacept over CNIs on cardiovascular risk could be partly explained by the impact of belatacept therapy on these circulating leukocytes. Hence, we phenotyped circulating leukocytes in transplanted patients with a stable renal function that were randomized between either continuation of CNI or conversion to belatacept in two international studies in which we participated. In 41 patients, we found that belatacept-treated patients consistently showed lower numbers of B-lymphocytes, T-lymphocytes as well as CD14-negative monocytes (CD14NM), especially in non-diabetic patients. Our observation that this decrease was associated to plasma concentrations of TNFα is consistent with a model where CD14NM-production of TNFα is diminished by belatacept-treatment, due to effects on the antigen-presenting cell compartment.


Assuntos
Abatacepte , Inibidores de Calcineurina , Terapia de Imunossupressão , Transplante de Rim , Humanos , Abatacepte/uso terapêutico , Inibidores de Calcineurina/uso terapêutico , Proliferação de Células , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/prevenção & controle , Terapia de Imunossupressão/métodos , Imunossupressores/uso terapêutico , Transplante de Rim/efeitos adversos , Monócitos , Fator de Necrose Tumoral alfa
14.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38562904

RESUMO

Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.

15.
Mol Ther Oncol ; 32(2): 200815, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38840781

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has emerged as a powerful therapeutic approach against a range of hematologic malignancies. While the incorporation of CD28 or 4-1BB costimulatory signaling domains into CARs revolutionized immune responses, there is an exciting prospect of further enhancing CAR functionality. Here, we investigated the design of CD19 CARs enriched with distinct Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), or Toll/IL-1 domain-containing adaptor-inducing interferon (IFN)-ß (TRIF) costimulatory domains. Screening of various designs identified several candidates with no tonic activity but with increased CD19 target cell-dependent interleukin (IL)-2 production. Human T cells transduced with the selected CAR construct exhibited augmented hIL-2 and hIFN-γ induction and cytotoxicity when cocultured with CD19-positive lymphoma and solid-tumor cell lines. RNA sequencing (RNA-seq) analysis demonstrated the upregulation of some genes involved in the innate immune response and T cell activation and proliferation. In experiments on a xenogeneic solid-tumor mice model, MyD88 and TLR4 CAR T cells exhibited prolonged remission. This study demonstrates that the integration of a truncated TLR4 signaling costimulatory domain could provide immunotherapeutic potential against both hematologic malignancies and solid tumors.

16.
Front Immunol ; 15: 1346097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633258

RESUMO

Introduction: A hallmark of T cell dysregulation during sepsis is the downregulation of costimulatory molecules. CD28 is one of T cell costimulatory molecules significantly altered on memory T cells during sepsis. We recently showed that treatment with a αCD28 agonist in septic immunologically experienced mice led to improved survival. Therefore, here we aimed to identify the cell subset(s) necessary for the survival benefit observed in the context of CD28 agonism, and to further investigate the mechanism by which CD28 agonism improves sepsis survival in immunologically experienced mice. Methods: Mice received specific pathogen inoculation to generate memory T cell populations similar in frequency to that of adult humans. Once these infections were cleared and the T cell response had transitioned to the memory phase, animals were rendered septic via cecal ligation and puncture in the presence or absence of an agonistic anti-CD28 mAb. Results: Results demonstrated that CD8+ T cells, and not bulk CD4+ T cells or CD25+ regulatory T cells, were necessary for the survival benefit observed in CD28 agonist-treated septic immunologically experienced mice. Upon examination of these CD8+ T cells, we found that CD28 agonism in septic immunologically experienced mice was associated with an increase in Foxp3+ CD8+ T cells as compared to vehicle-treated controls. When CD8+ T cells were depleted in septic immunologically experienced mice in the setting of CD28 agonism, a significant increase in levels of inflammatory cytokines in the blood was observed. Discussion: Taken together, these results indicate that CD28 agonism in immunologically experienced mice effectively suppresses inflammation via a CD8+-dependent mechanism to decrease mortality during sepsis.


Assuntos
Linfócitos T CD8-Positivos , Sepse , Animais , Humanos , Camundongos , Antígenos CD28/agonistas , Linfócitos T CD8-Positivos/imunologia , Sepse/imunologia , Sepse/mortalidade , Linfócitos T Reguladores
17.
ACS Appl Mater Interfaces ; 16(13): 15730-15740, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527279

RESUMO

Neural differentiation is crucial for advancing our understanding of the nervous system and developing treatments for neurological disorders. The advanced methods and the ability to manipulate the alignment, proliferation, and differentiation of stem cells are essential for studying neuronal development and synaptic interactions. However, the utilization of human induced pluripotent stem cells (iPSCs) for disease modeling of neurodegenerative conditions may be constrained by the prolonged duration and uncontrolled cell differentiation required for functional neural cell differentiation. Here, we developed a microfluidic chip to enhance the differentiation and maturation of specific neural lineages by placing aligned microelectrodes on the glass surface to regulate the neural differentiation of human iPSCs. The utilization of electrical stimulation (ES) in conjunction with neurotrophic factors (NF) significantly enhanced the efficiency in generating functional neurons from human iPSCs. We also observed that the simultaneous application of NF and ES to human iPSCs promoted their differentiation and maturation into functional neurons while increasing synaptic interactions. Our research demonstrated the effect of combining NF and ES on human iPSC-derived neural differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microfluídica , Neurônios , Diferenciação Celular , Fatores de Crescimento Neural/metabolismo , Eletrodos
18.
Best Pract Res Clin Rheumatol ; : 101943, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599937

RESUMO

Giant cell arteritis (GCA) is a prototypic autoimmune disease with a highly selective tissue tropism for medium and large arteries. Extravascular GCA manifests with intense systemic inflammation and polymyalgia rheumatica; vascular GCA results in vessel wall damage and stenosis, causing tissue ischemia. Typical granulomatous infiltrates in affected arteries are composed of CD4+ T cells and hyperactivated macrophages, signifying the involvement of the innate and adaptive immune system. Lesional CD4+ T cells undergo antigen-dependent clonal expansion, but antigen-nonspecific pathways ultimately control the intensity and duration of pathogenic immunity. Patient-derived CD4+ T cells receive strong co-stimulatory signals through the NOTCH1 receptor and the CD28/CD80-CD86 pathway. In parallel, co-inhibitory signals, designed to dampen overshooting T cell immunity, are defective, leaving CD4+ T cells unopposed and capable of supporting long-lasting and inappropriate immune responses. Based on recent data, two inhibitory checkpoints are defective in GCA: the Programmed death-1 (PD-1)/Programmed cell death ligand 1 (PD-L1) checkpoint and the CD96/CD155 checkpoint, giving rise to the "lost inhibition concept". Subcellular and molecular analysis has demonstrated trapping of the checkpoint ligands in the endoplasmic reticulum, creating PD-L1low CD155low antigen-presenting cells. Uninhibited CD4+ T cells expand, release copious amounts of the cytokine Interleukin (IL)-9, and differentiate into long-lived effector memory cells. These data place GCA and cancer on opposite ends of the co-inhibition spectrum, with cancer patients developing immune paralysis due to excessive inhibitory checkpoints and GCA patients developing autoimmunity due to nonfunctional inhibitory checkpoints.

19.
Antibodies (Basel) ; 13(2)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38804302

RESUMO

Immune checkpoint blockade has changed the treatment paradigm for advanced solid tumors, but the overall response rates are still limited. The combination of checkpoint blockade with anti-4-1BB antibodies to stimulate tumor-infiltrating T cells has shown anti-tumor activity in human trials. However, the further clinical development of these antibodies has been hampered by significant off-tumor toxicities. Here, we generated an anti-4-1BB/EGFR/PD-L1 trispecific antibody consisting of a triple-targeting tandem trimerbody (TT) fused to an engineered silent Fc region. This antibody (IgTT-4E1-S) was designed to combine the blockade of the PD-L1/PD-1 axis with conditional 4-1BB costimulation specifically confined to the tumor microenvironment (TME). The antibody demonstrated simultaneous binding to purified EGFR, PD-L1, and 4-1BB in solution, effective blockade of the PD-L1/PD1 interaction, and potent 4-1BB-mediated costimulation, but only in the presence of EGFR-expressing cells. These results demonstrate the feasibility of IgTT-4E1-S specifically blocking the PD-L1/PD-1 axis and inducing EGFR-conditional 4-1BB agonist activity.

20.
Immunother Adv ; 4(1): ltae004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978751

RESUMO

CD8+ T cells contribute to immune responses by producing cytokines when their T-cell receptors (TCRs) recognise peptide antigens on major-histocompability-complex class I. However, excessive cytokine production can be harmful. For example, cytokine release syndrome is a common toxicity observed in treatments that activate T cells, including chimeric antigen receptor (CAR)-T-cell therapy. While the engagement of costimulatory receptors is well known to enhance cytokine production, we have limited knowledge of their ability to regulate the kinetics of cytokine production by CAR-T cells. Here we compare early (0-12 h) and late (12-20 h) production of IFN-gg, IL-2, and TNF-a production by T cells stimulated via TCR or CARs in the presence or absence ligands for CD2, LFA-1, CD28, CD27, and 4-1BB. For T cells expressing TCRs and 1st-generation CARs, activation by antigen alone was sufficient to stimulate early cytokine production, while co-stimulation by CD2 and 4-1BB was required to maintain late cytokine production. In contrast, T cells expressing 2nd-generation CARs, which have intrinsic costimulatory signalling motifs, produce high levels of cytokines in both early and late periods in the absence of costimulatory receptor ligands. Losing the requirement for costimulation for sustained cytokine production may contribute to the effectiveness and/or toxicity of 2nd-generation CAR-T-cell therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA