Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 43(15): 4750-4790, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35860954

RESUMO

The model-free algorithms of "reinforcement learning" (RL) have gained clout across disciplines, but so too have model-based alternatives. The present study emphasizes other dimensions of this model space in consideration of associative or discriminative generalization across states and actions. This "generalized reinforcement learning" (GRL) model, a frugal extension of RL, parsimoniously retains the single reward-prediction error (RPE), but the scope of learning goes beyond the experienced state and action. Instead, the generalized RPE is efficiently relayed for bidirectional counterfactual updating of value estimates for other representations. Aided by structural information but as an implicit rather than explicit cognitive map, GRL provided the most precise account of human behavior and individual differences in a reversal-learning task with hierarchical structure that encouraged inverse generalization across both states and actions. Reflecting inference that could be true, false (i.e., overgeneralization), or absent (i.e., undergeneralization), state generalization distinguished those who learned well more so than action generalization. With high-resolution high-field fMRI targeting the dopaminergic midbrain, the GRL model's RPE signals (alongside value and decision signals) were localized within not only the striatum but also the substantia nigra and the ventral tegmental area, including specific effects of generalization that also extend to the hippocampus. Factoring in generalization as a multidimensional process in value-based learning, these findings shed light on complexities that, while challenging classic RL, can still be resolved within the bounds of its core computations.


Assuntos
Imageamento por Ressonância Magnética , Reforço Psicológico , Generalização Psicológica , Humanos , Aprendizagem , Imageamento por Ressonância Magnética/métodos , Recompensa
2.
J Psychiatr Res ; 169: 279-283, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065052

RESUMO

Social anxiety (SA) is associated with difficulties in positively updating negative social information when new information and feedback about chosen options (actual decisions) are received. However, it is unclear whether this difficulty persists when hidden information regarding unchosen options is explicitly presented. The aim of the current study was to address this gap. Participants (Mturk; n = 191) completed a two-phases novel task. In the task, participants chose to approach or avoid people, represented by images of faces. During the initial (learning) phase, participants learned, in a probabilistic context, which people are associated with negative outcomes and should be avoided, and which are associated with positive outcomes and should be approached. During the subsequent updating phase, people previously associated with negative outcomes became associated with positive outcomes and vice versa. Importantly, participants received feedback not only on their approach (actual) decisions, but also on their avoidance (counter-factual) decisions (e.g., approaching this person would have been beneficial). The results revealed that even when the consequences of avoidance were explicitly presented, SA was associated with difficulty in positive updating of social information. The findings support the view that biased updating of social information is a change-resistant mechanism that may underlie the maintenance of SA.


Assuntos
Ansiedade , Aprendizagem , Humanos
3.
Front Artif Intell ; 6: 1212336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575207

RESUMO

Resilience in autonomous agent systems is about having the capacity to anticipate, respond to, adapt to, and recover from adverse and dynamic conditions in complex environments. It is associated with the intelligence possessed by the agents to preserve the functionality or to minimize the impact on functionality through a transformation, reconfiguration, or expansion performed across the system. Enhancing the resilience of systems could pave way toward higher autonomy allowing them to tackle intricate dynamic problems. The state-of-the-art systems have mostly focussed on improving the redundancy of the system, adopting decentralized control architectures, and utilizing distributed sensing capabilities. While machine learning approaches for efficient distribution and allocation of skills and tasks have enhanced the potential of these systems, they are still limited when presented with dynamic environments. To move beyond the current limitations, this paper advocates incorporating counterfactual learning models for agents to enable them with the ability to predict possible future conditions and adjust their behavior. Counterfactual learning is a topic that has recently been gaining attention as a model-agnostic and post-hoc technique to improve explainability in machine learning models. Using counterfactual causality can also help gain insights into unforeseen circumstances and make inferences about the probability of desired outcomes. We propose that this can be used in agent systems as a means to guide and prepare them to cope with unanticipated environmental conditions. This supplementary support for adaptation can enable the design of more intelligent and complex autonomous agent systems to address the multifaceted characteristics of real-world problem domains.

4.
Front Big Data ; 4: 787459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901844

RESUMO

An accurate crime prediction and risk estimation can help improve the efficiency and effectiveness of policing activities. However, reports have revealed that biases like racial prejudice could exist in policing enforcement, and trained predictors may inherit them. In this work, we study the possible reasons and countermeasures to this problem, using records from the New York frisk and search program (NYCSF) as the dataset. Concretely, we provide analysis on the possible origin of this phenomenon from the perspective of risk discrepancy, and study it with the scope of selection bias. Motivated by theories in causal inference, we propose a re-weighting approach based on propensity score to balance the data distribution, with respect to the identified treatment: search action. Naively applying existing re-weighting approaches in causal inference is not suitable as the weight is passively estimated from observational data. Inspired by adversarial learning techniques, we formulate the predictor training and re-weighting as a min-max game, so that the re-weighting scale can be automatically learned. Specifically, the proposed approach aims to train a model that: 1) able to balance the data distribution in the searched and un-searched groups; 2) remain discriminative between treatment interventions. Extensive evaluations on real-world dataset are conducted, and results validate the effectiveness of the proposed framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA