Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(12): 4957-4973, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34129082

RESUMO

To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)-specific monoclonal antibody (mAb), the Escherichia coli-expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli-expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient-derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. KEY POINTS: • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells.


Assuntos
Vírus da Hepatite E , Animais , Anticorpos Monoclonais , Células CHO , Capsídeo , Proteínas do Capsídeo , Cricetinae , Cricetulus , Escherichia coli , Humanos , Camundongos , Camundongos Endogâmicos BALB C
2.
Animals (Basel) ; 10(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050408

RESUMO

Orthohepeviruses (HEV) can infect a wide range of animals, showing a relatively strict host specificity; however, its zoonotic potential, natural transmission in the wildlife are less known. Several new HEV-like viruses have been identified in various animal species, including carnivores; however, the phylogenetic relationship among these viruses is poorly resolved, since some of them were known as rodent-related so far. The red fox, the most widespread carnivore worldwide, is a known reservoir of several viruses that transmit from wildlife to humans or domestic animals; they might have a defined role in the circulation of rodent-borne HEV. In this study, we performed a HEV survey by heminested RT-PCR (Reverse Transcription PCR) on red fox fecal samples to investigate the presence of HEV in red foxes living in natural conditions, and to explore the origin of the virus via phylogenetic analysis. Out of the 26 investigated samples, HEV RNA was identified in one sample. Following Sanger sequencing, the novel sequence displayed 91% identity on the nucleotide level with recently published European common vole-HEV derived from Microtus arvalis. In contrast, it shared 85% nucleotide similarity with HEV strains described previously in red foxes. Our results strongly support "the dietary-origin" of unclassified HEV-like strains described from predators that usually prey on rodents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA