Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(22): e111653, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36161661

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a great threat to human health. The interplay between the virus and host plays a crucial role in successful virus replication and transmission. Understanding host-virus interactions are essential for the development of new COVID-19 treatment strategies. Here, we show that SARS-CoV-2 infection triggers redistribution of cyclin D1 and cyclin D3 from the nucleus to the cytoplasm, followed by proteasomal degradation. No changes to other cyclins or cyclin-dependent kinases were observed. Further, cyclin D depletion was independent of SARS-CoV-2-mediated cell cycle arrest in the early S phase or S/G2/M phase. Cyclin D3 knockdown by small-interfering RNA specifically enhanced progeny virus titres in supernatants. Finally, cyclin D3 co-immunoprecipitated with SARS-CoV-2 envelope (E) and membrane (M) proteins. We propose that cyclin D3 impairs the efficient incorporation of envelope protein into virions during assembly and is depleted during SARS-CoV-2 infection to restore efficient assembly and release of newly produced virions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ciclina D3 , Pandemias , Linhagem Celular , Vírion , Tratamento Farmacológico da COVID-19
2.
Plant J ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121182

RESUMO

The bilateral-to-radial symmetry transition occurring during the development of the Arabidopsis thaliana female reproductive organ (gynoecium) is a crucial biological process linked to plant fertilization and seed production. Despite its significance, the cellular mechanisms governing the establishment and breaking of radial symmetry at the gynoecium apex (style) remain unknown. To fill this gap, we employed quantitative confocal imaging coupled with MorphoGraphX analysis, in vivo and in vitro transcriptional experiments, and genetic analysis encompassing mutants in two bHLH transcription factors necessary and sufficient to promote transition to radial symmetry, SPATULA (SPT) and INDEHISCENT (IND). Here, we show that defects in style morphogenesis correlate with defects in cell-division orientation and rate. We showed that the SPT-mediated accumulation of auxin in the medial-apical cells undergoing symmetry transition is required to maintain cell-division-oriented perpendicular to the direction of organ growth (anticlinal, transversal cell division). In addition, SPT and IND promote the expression of specific core cell-cycle regulators, CYCLIN-D1;1 (CYC-D1;1) and CYC-D3;3, to support progression through the G1 phase of the cell cycle. This transcriptional regulation is repressed by auxin, thus forming an incoherent feed-forward loop mechanism. We propose that this mechanism fine-tunes cell division rate and orientation with the morphogenic signal provided by auxin, during patterning of radial symmetry at the style.

3.
FASEB J ; 37(7): e23025, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309599

RESUMO

We previously reported that cyclin D3-null mice display a shift toward the slow, oxidative phenotype in skeletal muscle, improved exercise endurance, and increased energy expenditure. Here, we explored the role of cyclin D3 in the physiologic response of skeletal muscle to external stimuli and in a model of muscle degenerative disease. We show that cyclin D3-null mice exhibit a further transition from glycolytic to oxidative muscle fiber type in response to voluntary exercise and an improved response to fasting. Since fast glycolytic fibers are known to be more susceptible to degeneration in Duchenne muscular dystrophy (DMD), we examined the effects of cyclin D3 inactivation on skeletal muscle phenotype in the mdx mouse model of DMD. Compared with control mdx mice, cyclin D3-deficient mdx mice display a higher proportion of slower and more oxidative myofibers, reduced muscle degenerative/regenerative processes, and reduced myofiber size variability, indicating an attenuation of dystrophic histopathology. Furthermore, mdx muscles lacking cyclin D3 exhibit reduced fatigability during repeated electrical stimulations. Notably, cyclin D3-null mdx mice show enhanced performance during recurrent trials of endurance treadmill exercise, and post-exercise muscle damage results decreased while the regenerative capacity is boosted. In addition, muscles from exercised cyclin D3-deficient mdx mice display increased oxidative capacity and increased mRNA expression of genes involved in the regulation of oxidative metabolism and the response to oxidative stress. Altogether, our findings indicate that depletion of cyclin D3 confers benefits to dystrophic muscle, suggesting that cyclin D3 inhibition may represent a promising therapeutic strategy against DMD.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Camundongos Endogâmicos mdx , Ciclina D3 , Músculo Esquelético , Metabolismo Energético , Modelos Animais de Doenças , Camundongos Knockout
4.
Chem Biodivers ; 21(6): e202400086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619074

RESUMO

The endoperoxide group of artemisinins is universally accepted an essential group for their anti-cancer effects. In this study, a series of D-ring-contracted artemisinin derivatives were constructed by combining ring-contracted artemisinin core with fragments of functional heterocyclic molecules or classical CDK4/6 inhibitors to identify more efficacious breast cancer treatment agents. Twenty-six novel hybridized molecules were synthesized and characterized by HRMS, IR, 1H-NMR and 13C NMR. In antiproliferative activities and kinase inhibitory effects assays, we found that the antiproliferative effects of B01 were close to those of the positive control Palbociclib, with GI50 values of 4.87±0.23 µM and 9.97±1.44 µM towards T47D cells and MDA-MB-436 cells respectively. In addition, the results showed that B01 was the most potent compound against CDK6/cyclin D3 kinase, with an IC50 value of 0.135±0.041 µM, and its activity was approximately 1/3 of the positive control Palbociclib.


Assuntos
Antineoplásicos , Artemisininas , Neoplasias da Mama , Proliferação de Células , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Humanos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Artemisininas/farmacologia , Artemisininas/química , Artemisininas/síntese química , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular , Feminino , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
5.
J Cutan Pathol ; 50(2): 113-117, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36059094

RESUMO

Glomus tumors are rare mesenchymal neoplasms composed of cells resembling the glomus body. They are most frequently seen in subungual regions but have been reported to arise in almost every anatomic location. Malignant glomus tumors, also called glomangiosarcomas, of cutaneous origin are exceedingly rare with only 47 reported cases. The genetic alterations that lead to the development of cutaneous malignant glomus tumors are not well understood. Small studies report glomus tumors with mutations in glomulin (GLMN), NF1, BRAF, NOTCH, PDGFRB, KRAS, and SMARCB1. These mutations have mostly been studied in deep or visceral glomus tumors. We report a case of a cutaneous malignant glomus tumor with a CCND3 point mutation identified on next generation sequencing, without any of the previously described genetic mutations. CCND3 mutations that cause cyclin D3 amplification may prove to be targets for CDK4/6 inhibitors in the treatment of malignant glomus tumors.


Assuntos
Tumor Glômico , Sarcoma , Humanos , Tumor Glômico/genética , Tumor Glômico/patologia , Sarcoma/patologia , Pele/patologia , Mutação , Ciclina D3/genética
6.
Acta Pharmacol Sin ; 44(9): 1920-1931, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37055530

RESUMO

The cell cycle regulator cyclin D3 (CCND3) is highly expressed in multiple myeloma (MM) and it promotes MM cell proliferation. After a certain phase of cell cycle, CCND3 is rapidly degraded, which is essential for the strict control of MM cell cycle progress and proliferation. In the present study, we investigated the molecular mechanisms regulating CCND3 degradation in MM cells. By utilizing affinity purification-coupled tandem mass spectrometry, we identified the deubiquitinase USP10 interacting with CCND3 in human MM OPM2 and KMS11 cell lines. Furthermore, USP10 specifically prevented CCND3 from K48-linked polyubiquitination and proteasomal degradation, therefore enhancing its activity. We demonstrated that the N-terminal domain (aa. 1-205) of USP10 was dispensable for binding to and deubiquitinating CCND3. Although Thr283 was important for CCND3 activity, it was dispensable for CCND3 ubiquitination and stability modulated by USP10. By stabilizing CCND3, USP10 activated the CCND3/CDK4/6 signaling pathway, phosphorylated Rb, and upregulated CDK4, CDK6 and E2F-1 in OPM2 and KMS11 cells. Consistent with these findings, inhibition of USP10 by Spautin-1 resulted in accumulation of CCND3 with K48-linked polyubiquitination and degradation that synergized with Palbociclib, a CDK4/6 inhibitor, to induce MM cell apoptosis. In nude mice bearing myeloma xenografts with OPM2 and KMS11 cells, combined administration of Spautin-l and Palbociclib almost suppressed tumor growth within 30 days. This study thus identifies USP10 as the first deubiquitinase of CCND3 and also finds that targeting the USP10/CCND3/CDK4/6 axis may be a novel modality for the treatment of myeloma.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Humanos , Ciclina D3 , Mieloma Múltiplo/metabolismo , Camundongos Nus , Apoptose , Enzimas Desubiquitinantes , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/metabolismo
7.
Mol Biol Rep ; 49(3): 1661-1668, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098394

RESUMO

BACKGROUND: The mortality rate of colorectal cancer (CRC) remains high in developing countries. Interventions that can inhibit the proliferation of tumor cells represent promising strategies in CRC treatment. Deltex E3 ubiquitin ligase 3 (DTX3) plays an essential role in tumor development and may predict the outcome of cancer patients. This study aimed to investigate the regulatory mechanisms of DTX3 in CRC progression. METHODS AND RESULTS: The expression of DTX3 was significantly downregulated in CRC tissues relative to normal colorectal tissues. DTX3 overexpression inhibited, while DTX3 knockout promoted the colony-forming capacity and proliferation of CRC cells. E2F transcription factor 1 (E2F1) is a key mediator of cell cycle progression that participates in the progression, metastasis, and chemoresistance of CRC. Further analysis revealed that DTX3 regulated the transcriptional activity of E2F1 in CRC cells. The transcription by E2F1 was significantly reduced with the increase in the cellular level of DTX3, while DTX3 knockout exerted an opposite effect. DTX3 knockout also increased the expression of E2F1 target genes involved in cell cycle progression, CDC2 and Cyclin D3, while PD 0332991, an inhibitor of E2F1 transcription, inhibited the expression of both proteins. CONCLUSIONS: In conclusion, DTX3 regulated CRC cell growth via regulating E2F1 and its downstream genes. These findings support further exploration of DTX3 as a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Fator de Transcrição E2F1 , Ciclo Celular/genética , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
J Exp Bot ; 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34310681

RESUMO

The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.

9.
J Exp Bot ; 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34453432

RESUMO

The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1, and retinoblastoma related 1, which are down-regulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and demonstrate that this may rely, at least in part, on hindering the function of host EBP1.

10.
Cancer Sci ; 111(2): 749-759, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31849147

RESUMO

The revised WHO classification newly defined the entities "High-grade B-cell lymphoma with MYC and BCL2, and/or BCL6 rearrangements (HGBL-DH/TH)" and "HGBL, NOS." Standard immunochemotherapy for diffuse large B-cell lymphoma (DLBCL), R-CHOP, is insufficient for HGBL patients, and there are currently no optimized therapeutic regimens for HGBL. We previously reported that CCND3, which encodes cyclin D3, harbored high mutation rates in Burkitt lymphoma (BL), HGBL and a subset of DLBCL. Furthermore, the knockdown of cyclin D3 expression was toxic to germinal center (GC)-derived B-cell lymphomas. Thus, the fundamental function of cyclin D3 is important for the pathogenesis of GC-derived B-cell lymphoma. We herein used two structurally different CDK4/6 inhibitors, palbociclib and abemaciclib, and examined their suppressive effects on cell proliferation and their ability to induce apoptosis in various aggressive B-cell lymphoma cell lines. The results obtained demonstrated that abemaciclib more strongly suppressed cell proliferation and induced apoptosis in GC-derived B-cell lymphoma cell lines than the control, but only slightly inhibited those features in activated B-cell (ABC)-like DLBCL cell lines. Palbociclib exerted partial or incomplete effects compared with the control and the effect was intermediate between abemaciclib and the control. Moreover, the effects of abemaciclib appeared to depend on cyclin D3 expression levels based on the results of the expression analysis of primary aggressive B-cell lymphoma samples. Therefore, abemaciclib has potential as a therapeutic agent for aggressive GC-derived B-cell lymphomas.


Assuntos
Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Ciclina D3/genética , Linfoma de Células B/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma de Células B/tratamento farmacológico , Mutação , Piperazinas/farmacologia , Piridinas/farmacologia
11.
Pathol Int ; 70(5): 280-286, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32052529

RESUMO

Primary splenic low-grade B-cell lymphoma of the red pulp comprises hairy cell leukemia (HCL) and splenic B-cell lymphoma/leukemia, unclassifiable (SPLL-U). SPLL-U is a rare disease that includes subtypes of a hairy cell leukemia-variant (HCL-v), splenic diffuse red pulp small B-cell lymphoma (SDRPL) and other types that are known as narrow sense SPLL-U (SPLL-U-NS). Notably, limited information is available regarding the BRAF mutation (V600E) and cyclin D3 expression in subtypes of SPLL-U. Therefore, we performed a pathological analysis of the BRAF mutation (V600E) and characterized pathological features of SPLL-U. We reviewed the pathological findings of 12 SPLL-U cases. The 12 cases considered included two cases of HCL-v, six cases of SPLL-U-NS and four undetermined cases. The BRAF mutation (V600E) was detected in three cases, which were all SPLL-U-NS. Cases with the BRAF mutation (V600E) have increased levels of CD103 expression and decreased cyclin D3 and cyclin D1 expression compared with cases that lacked the BRAF mutation. These findings suggest that the BRAF mutation might play a significant role in SPLL-U. Therefore, the significance of the BRAF mutation should be evaluated via genomic or transcriptional analyses of a large cohort of SPLL-U patients.


Assuntos
Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/patologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
12.
Cancer Cell Int ; 19: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198407

RESUMO

BACKGROUND: As a pivotal regulator, cyclin D3 gives play to a crucial value in conversion from the G1 stage to the S stage of cell cycle, which is implicated in tumor progression, especially proliferation and migration. Recent literatures have reported that cyclin D3 could predict survival time of malignancy patients. But, its prognostic role of cyclin D3 in neoplasms remains controversial. METHODS: Databases involving EMBASE, PubMed and Web of Science were carefully searched, and literatures investigating the prognostic effect of aberrantly expressing cyclin D3 among human cancers were collected for further analysis. We used both hazards ratios and its corresponding 95% confidence intervals to evaluate the connection among the survival rate of malignancy patients and the expression of cyclin D3. RESULTS: There were 13 eligible researches involving 16 cohorts and 2395 participants which were included in this study. The outcomes suggested that highly expressing cyclin D3 was significantly correlated with worse clinical prognosis of overall survival (HR 1.88; 95% CI 1.31-2.69) and disease specific survival (HR 2.68; 95% CI 1.35-5.31). But there existed no significant connection between the elevated expression of cyclin D3 with disease free survival (HR 2.65; 95% CI 0.83-8.46), recurrence-free survival (HR 2.86; 95% CI 0.82-9.96) and progression-free survival (HR 5.24; 95% CI 0.46-60.25) of diffident kinds of malignancy patients. Moreover, we discovered that elevated cyclin D3 expression was significantly connected with decreased overall survival in lymphoma (HR 3.72; 95% CI 2.18-6.36) while no significant relevance between highly expressing cyclin D3 and the overall survival in breast cancer was obtained (HR 2.12; 95% CI 0.76-5.91). CONCLUSIONS: This meta-analysis demonstrated that highly expressing cyclin D3 might be an unfavorable prognostic biomarker for various malignancy patients, which can make great contributions to the clinical diagnosis and treatment.

13.
Int J Med Sci ; 16(3): 470-476, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911281

RESUMO

Hes3 is a basic helix-loop-helix factor gene, which was found to be involved in neural cell differentiation. Expression and clinicopathological significance of Hes3 in non-small cell lung cancer was not clear. In this study, we used immunohistochemistry to examine Hes3 expression in normal human lung and non-small cell lung cancer tissues. Hes3 expression was detected in cytoplasm and nucleus. Hes3 expression in bronchial epithelial cells and epithelial cells of submucosal glands was relatively weak and the positive rate was of 30.3% (10/33). Hes3 expression in non-small cell lung cancer tissues (51.8% (58/112)) was significantly higher than that in normal lung tissues (p < 0.05). Hes3 expression in cancer tissues was significantly associated with poor differentiation, advanced TNM stages, lymph node metastasis, and a shorter patient survival time (p < 0.05). In vitro study showed that overexpression of Hes3 in A549 cells significantly promoted cancer cell proliferation and invasion, while inhibition of Hes3 expression significantly downregulated cancer cell proliferation and invasion (p < 0.05). Western blotting showed that overexpression of Hes3 significantly upregulated expression of Cyclin D1, Cyclin D3, and MMP7 in A549 cells, while inhibition of Hes3 expression in LK2 cells significantly downregulated the expression of these molecules (p < 0.05). These results indicated that Hes3 may contribute to the malignant phenotype of non-small cell lung cancer, possibly through regulation of Cyclin D1, Cyclin D3, and MMP7, and may be a promising cancer marker.


Assuntos
Ciclina D1/metabolismo , Ciclina D3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 7 da Matriz/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Feminino , Humanos , Estimativa de Kaplan-Meier , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Repressoras
14.
J Biol Chem ; 292(12): 5070-5088, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28130444

RESUMO

To identify new host factors that modulate the replication of influenza A virus, we performed a yeast two-hybrid screen using the cytoplasmic tail of matrix protein 2 from the highly pathogenic H5N1 strain. The screen revealed a high-score interaction with cyclin D3, a key regulator of cell cycle early G1 phase. M2-cyclin D3 interaction was validated through GST pull-down and recapitulated in influenza A/WSN/33-infected cells. Knockdown of Ccnd3 by small interfering RNA significantly enhanced virus progeny titers in cell culture supernatants. Interestingly, the increase in virus production was due to cyclin D3 deficiency per se and not merely a consequence of cell cycle deregulation. A combined knockdown of Ccnd3 and Rb1, which rescued cell cycle progression into S phase, failed to normalize virus production. Infection by influenza A virus triggered redistribution of cyclin D3 from the nucleus to the cytoplasm, followed by its proteasomal degradation. When overexpressed in HEK 293T cells, cyclin D3 impaired binding of M2 with M1, which is essential for proper assembly of progeny virions, lending further support to its role as a putative restriction factor. Our study describes the identification and characterization of cyclin D3 as a novel interactor of influenza A virus M2 protein. We hypothesize that competitive inhibition of M1-M2 interaction by cyclin D3 impairs infectious virion formation and results in attenuated virus production. In addition, we provide mechanistic insights into the dynamic interplay of influenza virus with the host cell cycle machinery during infection.


Assuntos
Ciclina D3/metabolismo , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/metabolismo , Proteínas da Matriz Viral/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Humanos , Influenza Humana/patologia , Mapas de Interação de Proteínas , Proteólise
15.
Mol Biol (Mosk) ; 52(3): 508-518, 2018.
Artigo em Russo | MEDLINE | ID: mdl-29989583

RESUMO

Pituitary tumor-transforming gene-1 (PTTG1) encodes securin, a multifunctional protein involved in development of various types of cancer. Securin participates in the regulation of sister chromatids separation and the expression of multiple genes involved in the control of the cell cycle, metabolism, and angiogenesis. In several human cell lines, we have found a novel short isoform of securin mRNA, which does not contain exons 3 and 4. After the translation of this new mRNA, a shortened protein is produced that, like the full-size form, is able to activate the transcription of cyclin D3 gene (CCND3), which controls the G1/S transition and angiogenesis factors VEGFA (vascular endothelial growth factor), and FGF2 (fibroblast growth factor 2) in HEK293 cells. However, unlike the full-size protein, the short isoform of PTTG1 does not affect the MYC gene expression because it lacks the DNA-binding domain, which is needed for its interactions with the MYC promoter. Furthermore, the short form of securin does not influence the expression of MYC transcriptional targets, such as TP53 and IL-8. Thus, we found a novel isoform of securin which is able to activate a more restricted repertoire of genes compared to the full-size protein.


Assuntos
Ciclina D3/biossíntese , Fator 2 de Crescimento de Fibroblastos/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/biossíntese , Securina/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Ciclina D3/genética , Fator 2 de Crescimento de Fibroblastos/genética , Células HEK293 , Células Hep G2 , Humanos , Células Jurkat , Células K562 , Células MCF-7 , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Securina/genética , Fator A de Crescimento do Endotélio Vascular/genética
16.
J Neurochem ; 133(6): 886-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25689470

RESUMO

At present, treatment for Parkinson's disease (PD) is only symptomatic; therefore, it is important to identify new targets tackling the molecular causes of the disease. We previously found that lymphoblasts from sporadic PD patients display increased activity of the cyclin D3/CDK6/pRb pathway and higher proliferation than control cells. These features were considered systemic manifestations of the disease, as aberrant activation of the cell cycle is involved in neuronal apoptosis. The main goal of this work was to elucidate whether the inhibition of cyclin D3/CDK6-associated kinase activity could be useful in PD treatment. For this purpose, we investigated the effects of two histone deacetylase (HDAC) inhibitors, suberoylanilide hydroxamic (SAHA) acid and sodium butyrate (NaB), and the m-TOR inhibitor rapamycin on cell viability and cyclin D3/CDK6 activity. Moreover, the potential neuroprotective action of these drugs was evaluated in 6-hydroxy-dopamine (6-OHDA) treated dopaminergic SH-SY5Y cells and primary rat mesencephalic cultures. Here, we report that both compounds normalized the proliferative activity of PD lymphoblasts and reduced the 6-OHDA-induced cell death in neuronal cells by preventing the over-activation of the cyclin D3/CDK6/pRb cascade. Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it is plausible that they may serve as novel therapeutic drugs for PD. We report here that peripheral cells from Parkinson's disease (PD) patients show an enhanced proliferative activity due to the activation of cyclin D3/CDK6-mediated phosphorylation of retinoblastoma protein (pRb). Treatment of PD lymphoblasts with inhibitors of histone deacetylases like suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (NaB), or with rapamycin, inhibitor of mechanistic target of rapamycin (mTOR) normalized the proliferation of PD lymphoblasts by preventing the over-activation of the cyclin D3/CDK6/pRb cascade. These drugs were shown to have neuroprotective effects in both human neuroblastoma SH-SY5Y cells and primary rat mid-brain dopaminergic neuronal cultures toxicity induced by 6-hidroxydopamine. Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it seems reasonable to believe that the repositioning of these drugs toward PD holds promise as a novel therapeutic strategy.


Assuntos
Ciclina D3/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Idoso , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Immunoblotting , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
17.
Biol Reprod ; 93(1): 13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26040671

RESUMO

Uterine stromal cells undergo extensive proliferation and differentiation during postimplantation development, a process known as decidualization. While a range of signaling molecules have been demonstrated to play essential roles in this event, its potential epigenetic regulatory mechanisms remain largely unknown. Retinoblastoma binding protein 7 (Rbbp7) is a protein reported as a core component of many histone modification and chromatin remodeling complexes. In the present study, our in situ hybridization and immunochemistry analysis first reveals a spatiotemporal expression of Rbbp7 in the uterus during the peri-implantation period. Observations of remarkable induction of Rbbp7 expression in uterine stromal cells in response to progesterone-nuclear receptor PR signaling point to its potential physiological significance during postimplantation uterine development. Employing a stealth RNA knockdown approach, combined with primary murine uterine stromal cell culture and an in vitro-induced decidualization model, we further demonstrate that Rbbp7 silencing compromises stromal cell decidualization via attenuating histone H4 acetylation and cyclin D3 expression. The results collectively suggest that Rbbp7 is a potentially functional player regulating normal histone acetylation modification and cyclin D3 expression in stromal cells during postimplantation decidual development.


Assuntos
Implantação do Embrião/fisiologia , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Células Estromais/metabolismo , Útero/metabolismo , Acetilação , Animais , Diferenciação Celular , Proliferação de Células , Ciclina D3/metabolismo , Feminino , Camundongos , Proteína 7 de Ligação ao Retinoblastoma/genética
18.
J Exp Bot ; 66(15): 4595-606, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022252

RESUMO

A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ciclinas/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Proliferação de Células , Ciclinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
19.
Cancer Cell Int ; 15: 89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412984

RESUMO

BACKGROUND: Cyclin D3, which induces progression through the G1 phase of the cell cycle, is a regulator of Cyclin-dependent kinases 4 and 6. Previous studies revealed that abnormal expression of Cyclin D3 was found in many different cancers. However, the role of Cyclin D3 in breast cancer (BC) remains unknown. The aim of this study is to examine the expression pattern of Cyclin D3 in BC and to evaluate its biological role and clinical significance in prognosis prediction. The mechanism involved is also evaluated. METHODS: Immunohistochemical staining was used to detect the expression of Cyclin D3. qRT-PCR was used to detect the mRNA level of Cyclin D3 in BC tissues and BC cell lines. Transwell assay was used to examine the role of Cyclin D3 in the migration and invasion of BC cells. Mass Spectrometry was used to search for the interacting protein with Cyclin D3. Co-Immunoprecipitation assay and GST-Pull Down assay were used to validate the interaction of Cyclin D3 and its interaction protein. RESULTS: Through detecting Cyclin D3 expression in 243 breast cancer patients' tissue array, we found Cyclin D3 expression was correlated with ER status (p = 0.000), PR status (p = 0.001), HER2 status (p = 0.002) and tumor differentiation (p = 0.045). The Kaplan-Meier survival curves indicated that the disease free survival (DFS) was significantly poor in high Cyclin D3 expression BC patients (p = 0.004). Furthermore, expression of Cyclin D3 was significantly associated with BC prognosis and was shown to be an independent prognostic marker in breast cancer (p = 0.028). By IHC staining and qPCR detection, Cyclin D3 expression was found to be down-regulated both in BC tissues and in BC cell lines compared with the corresponding normal controls. Further investigation showed Cyclin D3 was involved in the metastasis of BC cells and physically interacted with actin in vivo and in vitro. CONCLUSION: Our studies revealed that Cyclin D3 was upregulated in breast cancer and represented a novel predictor of BC prognosis.

20.
J Surg Res ; 193(2): 718-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25439221

RESUMO

BACKGROUND: MicroRNA 138 (miR-138) is recently shown to inhibit tumor growth and block cell cycle arrest of hepatocellular carcinoma (HCC) by targeting cyclin D3 (CCND3). The aim of this study was to investigate the clinical significance of miR-138 and CCND3 in human HCC, which remains unclear. METHODS: Quantitative real-time polymerase chain reaction analysis was performed to detect the expression levels of miR-138 and CCND3 messenger RNA (mRNA) in 180 self-pairs of HCC and noncancerous liver tissues. RESULTS: Compared with noncancerous liver tissues, the expression levels of miR-138 in HCC tissues were significantly downregulated (P < 0.001), whereas the expression levels of CCND3 mRNA in HCC tissues were significantly upregulated (P < 0.001). There was a negative correlation between miR-138 and CCND3 mRNA expression in HCC tissues (r = -0.56, P = 0.02). Additionally, statistical analysis showed that the combined miR 138 downregulation and CCND3 upregulation (miR-138-low-CCND3-high) was significantly associated with the advanced tumor-node-metastasis stage (P = 0.008) and the presence of portal vein invasion (P = 0.008) and lymph node metastasis (P = 0.01). More importantly, a significant trend was identified between the combined expression of miR-138-low-CCND3-high in HCC and worsening clinical prognosis. Multivariate survival analysis further recognized miR-138-low-CCND3-high expression as an independent prognostic factor for patients with HCC. CONCLUSIONS: Our data suggest that the combined expression of miR-138 and its direct target CCND3 may be correlated with significant characteristics of HCC. MiR-138 downregulation and CCND3 upregulation maybe concurrently associated with prognosis in patients with HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Ciclina D3/metabolismo , Neoplasias Hepáticas/patologia , Fígado/patologia , MicroRNAs/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , China/epidemiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA