Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23668, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742811

RESUMO

Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.


Assuntos
Quinase 5 Dependente de Ciclina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , Mitocôndrias , Podócitos , Animais , Humanos , Masculino , Camundongos , Apoptose , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Glucose , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Podócitos/metabolismo , Podócitos/patologia
2.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682237

RESUMO

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Assuntos
Diferenciação Celular , Quinase 5 Dependente de Ciclina , Metformina , Fator de Crescimento Neural , Neurônios , Receptor trkA , Animais , Metformina/farmacologia , Ratos , Células PC12 , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fosfotransferases
3.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842132

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Assuntos
Quinase 5 Dependente de Ciclina , Doença de Parkinson , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Calpaína/metabolismo , Calpaína/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Small ; : e2311507, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856024

RESUMO

The immunosuppressive characteristics and acquired immune resistance can restrain the therapy-initiated anti-tumor immunity. In this work, an antibody free programmed death receptor ligand 1 (PD-L1) downregulator (designated as CeSe) is fabricated to boost photodynamic activated immunotherapy through cyclin-dependent kinase 5 (CDK5) inhibition. Among which, FDA approved photosensitizer of chlorin e6 (Ce6) and preclinical available CDK5 inhibitor of seliciclib (Se) are utilized to prepare the nanomedicine of CeSe through self-assembly technique without drug excipient. Nanoscale CeSe exhibits an increased stability and drug delivery efficiency, contributing to intracellular production of reactive oxygen species (ROS) for robust photodynamic therapy (PDT). The PDT of CeSe can not only suppress the primary tumor growth, but also induce the immunogenic cell death (ICD) to release tumor associated antigens. More importantly, the CDK5 inhibition by CeSe can downregulate PD-L1 to re-activate the systemic anti-tumor immunity by decreasing the tumor immune escape and therapy-induced acquired immune resistance. This work provides an antibody free strategy to activate systemic immune response for metastatic tumor treatment, which may accelerate the development of translational nanomedicine with sophisticated mechanism.

5.
Cell Commun Signal ; 22(1): 233, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641599

RESUMO

BACKGROUND: Multiple neurodegenerative diseases are induced by the formation and deposition of protein aggregates. In particular, the microtubule-associated protein Tau leads to the development of so-called tauopathies characterized by the aggregation of hyperphosphorylated Tau within neurons. We recently showed that the constitutive activity of the serotonin receptor 7 (5-HT7R) is required for Tau hyperphosphorylation and aggregation through activation of the cyclin-dependent kinase 5 (CDK5). We also demonstrated physical interaction between 5-HT7R and CDK5 at the plasma membrane suggesting that the 5-HT7R/CDK5 complex is an integral part of the signaling network involved in Tau-mediated pathology. METHODS: Using biochemical, microscopic, molecular biological, computational and AI-based approaches, we investigated structural requirements for the formation of 5-HT7R/CDK5 complex. RESULTS: We demonstrated that 5-HT7R domains responsible for coupling to Gs proteins are not involved in receptor interaction with CDK5. We also created a structural model of the 5-HT7R/CDK5 complex and refined the interaction interface. The model predicted two conserved phenylalanine residues, F278 and F281, within the third intracellular loop of 5-HT7R to be potentially important for complex formation. While site-directed mutagenesis of these residues did not influence Gs protein-mediated receptor signaling, replacement of both phenylalanines by alanine residues significantly reduced 5-HT7R/CDK5 interaction and receptor-mediated CDK5 activation, leading to reduced Tau hyperphosphorylation and aggregation. Molecular dynamics simulations of 5-HT7R/CDK5 complex for wild-type and receptor mutants confirmed binding interface stability of the initial model. CONCLUSIONS: Our results provide a structural basis for the development of novel drugs targeting the 5-HT7R/CDK5 interaction interface for the selective treatment of Tau-related disorders, including frontotemporal dementia and Alzheimer's disease.


Assuntos
Quinase 5 Dependente de Ciclina , Ativação Enzimática , Receptores de Serotonina , Humanos , Doença de Alzheimer/metabolismo , Quinase 5 Dependente de Ciclina/química , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Fosforilação , Receptores de Serotonina/química , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Transdução de Sinais
6.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 71-81, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38013469

RESUMO

Epithelial-mesenchymal transformation (EMT) plays an important role in the progression of diabetic nephropathy. Dexmedetomidine (DEX) has shown renoprotective effects against ischemic reperfusion injury; however, whether and how DEX prevents high glucose-induced EMT in renal tubular epithelial cells is incompletely known. Here, we conduct in vitro experiments using HK-2 cells, a human tubular epithelial cell line. Our results demonstrate that high glucose increases the expressions of EMT-related proteins, including Vimentin, Slug, Snail and Twist, while decreasing the expression of E-cadherin and increasing Cdk5 expression in HK-2 cells. Both Cdk5 knockdown and inhibition by roscovitine increase the expressions of E-cadherin while decreasing the expressions of other EMT-related markers. DEX inhibits Cdk5 expression without affecting cell viability and changes the expressions of EMT-related markers, similar to effects of Cdk5 inhibition. Furthermore, Cdk5 is found to interact with Drp1 at the protein level and mediate the phosphorylation of Drp1. In addition, Drp1 inhibition with mdivi-1 could also restrain the high glucose-induced EMT process in HK-2 cells. Immunofluorescence results show that roscovitine, Mdivi-1 and DEX inhibit high glucose-induced intracellular ROS accumulation, while the oxidant H 2O 2 eliminates the protective effect of DEX on the EMT process. These results indicate that DEX mitigates high glucose-induced EMT progression in HK-2 cells via inhibition of the Cdk5/Drp1/ROS pathway.


Assuntos
Dexmedetomidina , Transição Epitelial-Mesenquimal , Transdução de Sinais , Humanos , Caderinas/metabolismo , Dexmedetomidina/farmacologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/toxicidade , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Roscovitina/metabolismo , Roscovitina/farmacologia , Quinase 5 Dependente de Ciclina/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/metabolismo , Dinaminas/efeitos dos fármacos , Dinaminas/metabolismo
7.
Mol Pain ; 19: 17448069231218353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37982142

RESUMO

Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological states. Tissue or nerve injuries induce extensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons is not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential (RMP) and reduced the rheobase currents as compared to the control neurons. CDK5 activation changed the shape of the action potential (AP) by increasing AP -rise time, -fall time, and -half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in control hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any significant changes in the p35-overexpressing group. We conclude that, in dissociated hDRGs neurons, CDK5 activation through the overexpression of p35 broadens the AP and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under the condition in which CDK5 is upregulated, contributing to chronic pain.


Assuntos
Dor Crônica , Humanos , Potenciais de Ação , Quinase 5 Dependente de Ciclina/metabolismo , Fosforilação , Células Receptoras Sensoriais/metabolismo
8.
Cancer Control ; 30: 10732748231169396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37039746

RESUMO

OBJECTIVE: We investigated the prognostic value of cyclin-dependent kinase 5 (CDK5) in a true population-based cohort of patients with colon cancer. METHODS: 1. Immunohistochemical (IHC) staining was used to retrospectively analyse the expression of CDK5 in colon cancer tissue samples of 296 patients. The χ2 test, Kaplan-Meier method and Cox proportional regression model were used to analyse the difference between the patients with differential expression of CDK5 and with different stages (metastatic and nonmetastatic); 2. The number of tumour-infiltrating lymphocytes (TILs) in tumour sections was determined, and its relationship with prognosis was explored. RESULTS: 1. Among 296 patients stained for CDK5, 18 cases (6.09%) showed negative expression, 77 cases (26.01%) showed weak expression (+1), 124 cases (41.89%) showed medium positive expression (2+), and 77 cases (26.01%) showed strong positive expression (3+). The expression of CDK5 was neither related to mismatch repair nor TILs (p > .05). In non-metastatic patients, longer progression-free survival (PFS) and cancer-specific survival (CSS) were observed in patients with high CDK5 expression (2+ or 3+) than low CDK5 expression (- or 1+), while in metastatic disease, the opposite was true (p < .001). 2. TILs in 226 patients were detected in the study. Among them, 115 cases (50.88%) showed a low number of TILs (TILs-L), and 111 cases (49.12%) showed a high number of TILs (TILs-H). Patients with a TIL ratio greater than .2 had a significantly better CSS (p < .001) or PFS (p = .008) than patients with a lower TIL ratio. By multivariate analysis, TILs-H was a protective factor for CSS, however failed to reach a significant difference (hazard ratio: .59, 95% CI: .33∼1.06, p = .079), and so was the PFS (HR: .65, 95% CI: .29∼1.43, p = .279). CONCLUSION: High expression of CDK5 indicates a good prognosis in nonmetastatic colon cancer, while it is the opposite in metastatic colon cancer, and the expression of CDK5 is unrelated to TILs. Patients with TIL-H have a better prognosis, with a proper cut-off value of 20% for colon cancer.


Assuntos
Carcinoma , Neoplasias do Colo , Humanos , Linfócitos do Interstício Tumoral/patologia , Estudos Retrospectivos , Quinase 5 Dependente de Ciclina , Prognóstico , Neoplasias do Colo/patologia , Carcinoma/patologia
9.
Proc Natl Acad Sci U S A ; 117(31): 18401-18411, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690709

RESUMO

Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tumores Neuroectodérmicos/tratamento farmacológico , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosforilação
10.
Esophagus ; 20(3): 502-514, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853485

RESUMO

BACKGROUND: Cyclin-dependent kinase 5 (CDK5) is a member of the cyclin-dependent kinase family, and unlike the rest of the members of the family, its kinase activity is independent of cyclins. Accumulating evidence has shown that CDK5 plays a significant role in the progress of tumorigenesis except in nervous system. In particular, the expression of CDK5 and its function in esophageal cancer (ESCA) remain unknown. METHODS: With TCGA and GEO databases, CDK5 was analyzed with the expression, predicted value, clinical relationship, functional enrichment, immune cell infiltration and immune molecules in ESCA. In addition, we explored the CDK5 expression with local datasets and the influence of CDK5 on proliferation, migration and invasion behaviors of the esophageal squamous cell carcinoma (ESCC) cells in vitro and in vivo experiments. RESULTS: CDK5 expression was upregulated in ESCA, and this regulation has been verified in cell lines of ESCC. Further analysis has found that the expression of CDK5 was correlated with race, weight, BMI, histological type and tumor central location in ESCA. KEGG analysis revealed that CDK5 was involved in the progress of cancers, innate immune system and PI3K-Akt signaling pathway. CDK5 was closely related to immune cells and immune molecules in ESCA. Functional experiments confirmed CDK5 was an oncogene in ESCC by in vivo and in vitro models. CONCLUSIONS: This study shows that CDK5 is a risk factor to promote tumor progression, and Roscovitine could be one of the effective tools in the therapy of ESCA.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Fosfatidilinositol 3-Quinases , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Biomarcadores
11.
Cancer ; 128(9): 1775-1786, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143052

RESUMO

BACKGROUND: The objective of this study was to investigate the role and molecular mechanism of cyclin-dependent kinase 5 (CDK5) in regulating the growth of tongue squamous cell carcinoma (TSCC). METHODS: The authors used multiple methods to detect the levels of CDK5 expression in samples of TSCC and to explore the relation between CDK5 expression and various clinicopathologic factors. In vivo and in vitro cell experiments were performed to detect the proliferation, invasion, and migration of TSCC cells with CDK5 knockdown or overexpression. These studies verified that CDK5 regulates the occurrence and development of TSCC cells through the microRNA 513c-5p/cell division cycle 25B pathway. RESULTS: An elevated level of CDK5 expression in TSCC tissues was identified as an independent risk factor affecting TSCC growth and patient prognosis. Patients who had TSCC with low levels of CDK5 expression had a higher survival rate than those with high levels. Knockdown of CDK5 reduced the proliferation, migration, and invasion of TSCC cells both in vitro and in vivo. In addition, the authors observed that CDK5 regulated the growth of TSCC through the microRNA 513c-5p/cell division cycle C25B pathway. CONCLUSIONS: CDK5 functions as an oncogene in TSCC and might serve as a molecular marker for use in the diagnosis and treatment of TSCC. LAY SUMMARY: Tongue squamous cell carcinoma (TSCC) is 1 of the most common malignant tumors of the head and neck, and the survival rate of patients with tongue cancer has been very low. Therefore, it is important to study the molecular mechanism of TSCC progression to identify biomarkers that can be used to improve its clinical diagnosis and treatment. Cyclin-dependent kinase 5 (CDK5) is an atypical member of the cyclin-dependent kinase family and is involved in regulating the cell cycle. Changes in the cell cycle are of great significance for the occurrence and development of tumor cells; and, in recent years, increasing evidence has suggested that CDK5 exists in a disordered state in cancer cells. In this study, the authors demonstrate that CDK5 functions as an oncogene in TSCC and might serve as a molecular marker for use in the diagnosis and treatment of TSCC.


Assuntos
Quinase 5 Dependente de Ciclina , MicroRNAs , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Língua , Fosfatases cdc25 , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
12.
Bull Exp Biol Med ; 172(6): 701-708, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35503584

RESUMO

It is known that the expression of the deubiquitinating enzyme BRCA1-BRCA2-containing complex subunit 3 (BRCC3) and cyclin-dependent protein kinase 5 (Cdk5) is increased in Parkinson's disease (both are involved in neuroinflammatory response). However, the regulatory mechanism of Cdk5 on the post-translational modification of BRCC3 remains unclear. Here we studied whether Cdk5 phosphorylates BRCC3. Phosphorylation of BRCC3 by Cdk5 was predicted by GPS 5.0 software. His-BRCC3 plasmid was constructed by cloning the BRCC3 gene into pGEX-6P-1 vector, and then His-BRCC3 fusion protein was induced with isopropyl ß-d-1-thiogalactopyranoside and purified using His-Tag affinity chromatography purification agarose. Phosphorylation of BRCC3 fusion protein by Cdk5 in vitro was detected by mass spectrometry and Western blotting. The results showed that multiple phosphorylation sites were predicted by GPS 5.0, and the His-BRCC3 fusion protein was successfully induced and purified. In vitro kinase assay, Western blotting, and mass spectrometry showed that Cdk5 can phosphorylate BRCC3. It has been demonstrated that protein kinase Cdk5 can phosphorylate the deubiquitinating enzyme BRCC3 in vitro, which provides new data for further study on the mechanism of neurodegeneration.


Assuntos
Quinase 5 Dependente de Ciclina , Enzimas Desubiquitinantes , Western Blotting , Quinase 5 Dependente de Ciclina/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Humanos , Doença de Parkinson/metabolismo , Fosforilação
13.
Eur J Neurosci ; 54(9): 7048-7062, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34622493

RESUMO

Calcium influx into presynaptic terminals through voltage-gated Ca2+ channels triggers univesicular or multivesicular release of neurotransmitters depending on the characteristics of the release machinery. However, the mechanisms underlying multivesicular release (MVR) and its regulation remain unclear. Previous studies showed that in rat cerebellum, the cyclin-dependent kinase inhibitor roscovitine profoundly increases excitatory postsynaptic current (EPSC) amplitudes at granule cell (GC)-Purkinje cell (PC) synapses by enhancing the MVR of glutamate. This compound can also moderately augment the amplitude and prolong the decay time of inhibitory postsynaptic currents (IPSCs) at molecular layer interneuron (MLI)-PC synapses via MVR enhancement and GABA spillover, thus allowing for persistent activation of perisynaptic GABA receptors. The enhanced MVR may depend on the driving force for Cav 2.1 channel-mediated Ca2+ influx. To determine whether the distinct spatiotemporal dynamics of presynaptic Ca2+ influence MVR, we compared the effects of slow and fast Ca2+ chelators, that is, EGTA and BAPTA, respectively, on roscovitine-induced actions at GC-PC and MLI-PC synapses. Membrane-permeable EGTA-AM decreased GC-PC EPSC and MLI-PC IPSC amplitudes to a similar extent but suppressed the roscovitine-induced enhancement of EPSCs. In contrast, BAPTA-AM attenuated the effects of roscovitine on IPSCs. These results suggest that roscovitine augmented glutamate release by activating the release machinery located distally from the Cav 2.1 channel clusters, while it enhanced GABA release in a manner less dependent on those at distal sites. Therefore, the spatial relationships among Ca2+ channels, buffers, and sensors are critical determinants of the differential facilitatory actions of roscovitine on glutamatergic and GABAergic synapses in the cerebellar cortex.


Assuntos
Cerebelo/efeitos dos fármacos , Roscovitina/farmacologia , Sinapses , Transmissão Sináptica , Animais , Canais de Cálcio Tipo N , Cerebelo/metabolismo , Ácido Glutâmico , Neurotransmissores , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos
14.
J Cell Sci ; 132(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709918

RESUMO

Neuronal depolarization induces the synaptic release of tissue-type plasminogen activator (tPA). Cyclin-dependent kinase-5 (Cdk5) is a member of the family of cyclin-dependent kinases that regulates cell migration and synaptic function in postmitotic neurons. Cdk5 is activated by its binding to p35 (also known as Cdk5r1), a membrane-anchored protein that is rapidly degraded by the proteasome. Here, we show that tPA prevents the degradation of p35 in the synapse by a plasminogen-dependent mechanism that requires open synaptic N-methyl-D-aspartate (NMDA) receptors. We show that tPA treatment increases the abundance of p35 and its binding to Cdk5 in the postsynaptic density (PSD). Furthermore, our data indicate that tPA-induced p35-mediated Cdk5 activation does not induce cell death, but instead prevents NMDA-induced ubiquitylation of postsynaptic density protein-95 (PSD-95; also known as Dlg4) and the removal of GluR1 (also known as Gria1)-containing α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors from the PSD. These results show that the interaction between tPA and synaptic NMDA receptors regulates the expression of AMPA receptor subunits in the PSD via p35-mediated Cdk5 activation. This is a novel role for tPA as a regulator of Cdk5 activation in cerebral cortical neurons.


Assuntos
Córtex Cerebral/patologia , Quinase 5 Dependente de Ciclina/metabolismo , Neurônios/fisiologia , Fosfotransferases/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/metabolismo , Ativação Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Ligação Proteica , Proteólise , Receptores de AMPA/metabolismo , Ubiquitinação
15.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360858

RESUMO

Tauopathies are neurodegenerative diseases characterized by abnormal metabolism of misfolded tau proteins and are progressive. Pathological phosphorylation of tau occurs in the retinal ganglion cells (RGCs) after optic nerve injuries. Cyclin-dependent kinase-5 (Cdk5) causes hyperphosphorylation of tau. To determine the roles played by Cdk5 in retinal degeneration, roscovitine, a Cdk5 inhibitor, was injected intravitreally after optic nerve crush (ONC). The neuroprotective effect of roscovitine was determined by the number of Tuj-1-stained RGCs on day 7. The change in the levels of phosphorylated tau, calpain-1, and cleaved α-fodrin was determined by immunoblots on day 3. The expression of P35/P25, a Cdk5 activator, in the RGCs was determined by immunohistochemistry. The results showed that roscovitine reduced the level of phosphorylated tau by 3.5- to 1.6-fold. Calpain-1 (2.1-fold) and cleaved α-fodrin (1.5-fold) were increased on day 3, suggesting that the calpain signaling pathway was activated. P35/P25 was accumulated in the RGCs that were poorly stained by Tuj-1. Calpain inhibition also reduced the increase in phosphorylated tau. The number of RGCs decreased from 2191 ± 178 (sham) to 1216 ± 122 cells/mm2 on day 7, and roscovitine preserved the level at 1622 ± 130 cells/mm2. We conclude that the calpain-mediated activation of Cdk5 is associated with the pathologic phosphorylation of tau.


Assuntos
Quinase 5 Dependente de Ciclina/fisiologia , Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Tauopatias , Proteínas tau/metabolismo , Animais , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Fosforilação , Ratos , Ratos Wistar , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Roscovitina/farmacologia , Tauopatias/metabolismo , Tauopatias/patologia
16.
Eur J Neurosci ; 52(3): 3002-3021, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383214

RESUMO

Synaptic vesicle exocytosis is triggered by Ca2+ influx through several subtypes of voltage-gated calcium channels in the presynaptic terminal. We previously reported that paired-pulse stimulation at brief intervals increases Cav 2.1 (P/Q-type) channel-mediated multivesicular release (MVR) at glutamatergic synapses between granule cells (GCs) and molecular layer interneurons (MLIs) in rat cerebellar slices. However, it has yet to be determined how Cav 2 channel subtypes take part in MVR in single axon terminal. This study therefore aimed at examining the effects of roscovitine on different types of cerebellar synapses that make contacts with Purkinje cells (PCs), because this compound has been shown to enhance Cav 2.1 channel-mediated MVR at GC-MLI synapses. Bath application of roscovitine profoundly increased the amplitude of excitatory postsynaptic currents (EPSCs) at GC-PC synapses by a presynaptic mechanism as previously observed at GC-MLI synapses, whereas it caused a marginal effect on climbing fiber-mediated EPSCs in PCs. At MLI-PC synapses, roscovitine increased both the amplitude and decay time of inhibitory postsynaptic currents (IPSCs) by enhancing multivesicular GABA release. When extracellular Ca2+ concentration ([Ca2+ ]e ) decreased, roscovitine became less effective in increasing GC-PC EPSCs. By contrast, roscovitine was able to augment MLI-PC IPSCs in the low [Ca2+ ]e . The Cav 2.1 channel blocker ω-agatoxin IVA suppressed the roscovitine-induced facilitatory actions on both GC-PC EPSCs and MLI-PC IPSCs. These results demonstrate that roscovitine enhances MVR at the GC-PC excitatory synapses in a manner dependent on the driving force of Cav 2.1 channel-mediated Ca2+ influx into the nerve terminal, while it also facilitates MLI-PC inhibitory transmission via Ca2+ -insensitive mechanisms.


Assuntos
Células de Purkinje , Transmissão Sináptica , Animais , Cerebelo , Ratos , Roscovitina , Sinapses
17.
Neurobiol Learn Mem ; 171: 107226, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247664

RESUMO

Posttranslational modifications play crucial roles in synaptic plasticity and memory formation. The important role of histone acetylation is well established in these processes. However, activity-dependent regulation of acetylation of non-histone proteins is not well understood. We previously showed that α-tubulin is acetylated in an activity-dependent manner. Here, we show that cyclin-dependent kinase 5 (CDK5) plays an important role in α-tubulin acetylation induced by KCl depolarization or N-methyl-D-aspartate stimulation of the hippocampal slices. In addition, KCl depolarization inhibits the activity of SIRT2, an α-tubulin deacetylase. The inhibitory effect of KCl on SIRT2 activity requires CDK5 activity. Furthermore, α-tubulin acetylation is enhanced by memory training in object recognition task. These results suggest that memory formation may involve α-tubulin acetylation.


Assuntos
Hipocampo/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , N-Metilaspartato/farmacologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Sirtuína 2/metabolismo
18.
Cell Mol Neurobiol ; 40(6): 897-909, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32016637

RESUMO

A30P and A53T mutations in the gene encoding alpha-synuclein-a presynaptic protein-are the most frequently identified genetic causes of Parkinson's disease (PD). Aberrant alpha-synuclein likely plays central roles in dopaminergic neuronal death and motor symptoms in PD. This study investigated the protein phosphorylation profile in early-stage PD through phosphoproteomic analyses of tissue samples from the substantia nigra pars compacta (SNpc) of 6-month-old alpha-synuclein transgenic mice (A30P/A53T double-mutant human alpha-synuclein; hm2α-SYN-39 strain). We identified 5351 phosphorylation sites in 2136 phosphoproteins. Of these, 357 upregulated sites in 245 proteins and 50 downregulated sites in 46 proteins were differentially phosphorylated between alpha-synuclein transgenic and wildtype mice. Bioinformatic analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and motif analyses, were used to elucidate the molecular and cellular mechanisms underlying double-mutant human alpha-synuclein overexpression. Scansite-based computational analysis and prediction of differentially quantitated phosphoproteins identified the neuronal protein cyclin-dependent kinase 5 (Cdk5) as the most significantly enriched kinase. Biochemical experiments suggested that the p25/Cdk5 pathway was activated in an MPP+-induced cell culture model and MPTP-induced mouse model. Moreover, Cdk5 could directly phosphorylate the Ank2 protein at Ser1889 in vitro. Therefore, quantitative phosphoproteomic using an alpha-synuclein transgenic mouse model offers a powerful approach for elucidating the protein phosphorylation mechanism underlying SNpc dopaminergic neuronal death in an animal model of PD.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Fosfoproteínas/metabolismo , Proteômica , Transdução de Sinais , alfa-Sinucleína/metabolismo , Animais , Bases de Dados de Proteínas , Modelos Animais de Doenças , Regulação para Baixo , Ontologia Genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson , Fosforilação , Especificidade por Substrato , Regulação para Cima
19.
Proc Natl Acad Sci U S A ; 114(33): E6992-E7001, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760951

RESUMO

The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Dendritos/metabolismo , Proteínas/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Camundongos , Fosforilação/fisiologia , Ratos
20.
J Struct Biol ; 207(3): 317-326, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319193

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor with a key role in metabolic processes and is target of CDK5 kinase phosphorylation at S245 (S273 in PPARγ isoform 2), thereby inducing insulin resistance. A remarkable effort has been addressed to find PPARγ ligands that inhibit S245 phosphorylation, but the poor understanding in this field challenges the design of such ligands. Here, through computational and biophysical methods, we explored an experimentally validated model of PPARγ-CDK5 complex, and we presented K261, K263 or K265, which are conserved in mammals, as important anchor residues for this interaction. In addition, we observed, from structural data analysis, that PPARγ ligands that inhibit S245 phosphorylation are not in direct contact with these residues; but induce structural modifications in PPARγ:CDK5/p25 interface. In summary, our PPARγ and CDK5/p25 interaction analyses open new possibilities for the rational design of novel inhibitors that impair S245 phosphorylation.


Assuntos
Quinase 5 Dependente de Ciclina/química , Complexos Multiproteicos/química , PPAR gama/química , Conformação Proteica , Animais , Sítios de Ligação/genética , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Ligantes , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , PPAR gama/genética , PPAR gama/metabolismo , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA