Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 479(3): 225-243, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015072

RESUMO

The ability of the cellular immune system to discriminate self from foreign antigens depends on the appropriate calibration of the T cell receptor (TCR) signalling threshold. The lymphocyte homeostatic cytokine interleukin 7 (IL-7) is known to affect TCR thresholding, but the molecular mechanism is not fully elucidated. A better understanding of this process is highly relevant in the context of autoimmune disease therapy and cancer immunotherapy. We sought to characterise the early signalling events attributable to IL-7 priming; in particular, the altered phosphorylation of signal transduction proteins and their molecular localisation to the TCR. By integrating high-resolution proximity- phospho-proteomic and imaging approaches using primary T cells, rather than engineered cell lines or an in vitro expanded T cell population, we uncovered transduction events previously not linked to IL-7. We show that IL-7 leads to dephosphorylation of cytohesin interacting protein (CYTIP) at a hitherto undescribed phosphorylation site (pThr280) and alters the co-localisation of cytohesin-1 with the TCR and LFA-1 integrin. These results show that IL-7, acting via CYTIP and cytohesin-1, may impact TCR activation thresholds by enhancing the co-clustering of TCR and LFA-1 integrin.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interleucina-7/farmacologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/metabolismo , Doadores de Sangue , Células Cultivadas , Humanos , Ativação Linfocitária/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Treonina/metabolismo
2.
Pharmacol Res ; 185: 106513, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252772

RESUMO

cytohesin-2 is a guanine nucleotide exchange factor to activate ARF1 and ARF6, which are involved in various biological processes, including signal transduction, cell differentiation, cell structure organization, and survival. Nevertheless, there is a lack of evidence revealing the role of cytohesin-2 in osteoclast differentiation and in the development of osteoporosis. In this study, we find cytohesin-2 and ARF1 positively regulate osteoclast differentiation and function. Blocking the cytohesin-2 /ARF1 axis with SecinH3 or by genetic silencing of cytohesin-2 inhibits osteoclast formation and function in vitro. In vivo treatment with SecinH3 ameliorates ovariectomy-induced osteoporosis. Mechanistically, RNA-sequencing combined with molecular biological methodologies reveal that the regulatory function of cythohesin-2/ARF1 axis in osteoclast differentiation is mainly dependent on activating the JNK pathway. Further, in addition to the common viewpoint that JNK is activated by IRE1 via its kinase activity, we found that JNK can act upstream and regulate the endoribonuclease activity of IRE1 to promote XBP1 splicing. Both SecinH3 and silencing of cytohesin-2 inhibit JNK activation and IRE1 endoribonuclease activity, leading to the suppression of osteoclast differentiation. Taken together, our findings add new insights into the regulation between JNK and IRE1, and reveal that inhibiting the cytohesin-2/ARF1/JNK/IRE1 axis might represent a potential new strategy for the treatment of post-menopause osteoporosis.


Assuntos
Fatores de Ribosilação do ADP , Osteoporose , Humanos , Fatores de Ribosilação do ADP/fisiologia , Osteoclastos/metabolismo , Fator 6 de Ribosilação do ADP , Osteoporose/tratamento farmacológico , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases
3.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563476

RESUMO

The cytohesin proteins, consisting of four closely related members (cytohesins-1, -2, -3, and -4), are a subfamily of the Sec7 domain-containing guanine nucleotide exchange factors for ADP ribosylation factors (Arfs), which are critical regulators of membrane trafficking and actin cytoskeleton remodeling. Recent advances in molecular biological techniques and the development of a specific pharmacological inhibitor for cytohesins, SecinH3, have revealed the functional involvement of the cytohesin-Arf pathway in diverse neuronal functions from the formation of axons and dendrites, axonal pathfinding, and synaptic vesicle recycling, to pathophysiological processes including chronic pain and neurotoxicity induced by proteins related to neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we review the physiological and pathological roles of the cytohesin-Arf pathway in neurons and discuss the future directions of this research field.


Assuntos
Fatores de Ribosilação do ADP , Moléculas de Adesão Celular , Fatores de Ribosilação do ADP/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neurônios/metabolismo
4.
Curr Top Membr ; 83: 77-106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31196611

RESUMO

We have previously identified the interaction between mammalian V-ATPase a2-subunit isoform and cytohesin-2 (CTH2) and studied molecular details of binding between these proteins. In particular, we found that six peptides derived from the N-terminal cytosolic domain of a2 subunit (a2N1-402) are involved in interaction with CTH2 (Merkulova, Bakulina, Thaker, Grüber, & Marshansky, 2010). However, the actual 3D binding interface was not determined in that study due to the lack of high-resolution structural information about a-subunits of V-ATPase. Here, using a combination of homology modeling and NMR analysis, we generated the structural model of complete a2N1-402 and uncovered the CTH2-binding interface. First, using the crystal-structure of the bacterial M. rubber Icyt-subunit of A-ATPase as a template (Srinivasan, Vyas, Baker, & Quiocho, 2011), we built a homology model of mammalian a2N1-352 fragment. Next, we combined it with the determined NMR structures of peptides a2N368-395 and a2N386-402 of the C-terminal section of a2N1-402. The complete molecular model of a2N1-402 revealed that six CTH2 interacting peptides are clustered in the distal and proximal lobe sub-domains of a2N1-402. Our data indicate that the proximal lobe sub-domain is the major interacting site with the Sec7 domain of first CTH2 protein, while the distal lobe sub-domain of a2N1-402 interacts with the PH-domain of second CTH2. Indeed, using Sec7/Arf-GEF activity assay we experimentally confirmed our model. The interface formed by peptides a2N1-17 and a2N35-49 is involved in specific interaction with Sec7 domain and regulation of GEF activity. These data are critical for understanding of the cross-talk between V-ATPase and CTH2 as well as for the rational drug design to regulate their function.


Assuntos
Desenho de Fármacos , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Animais , Bactérias , Sítios de Ligação , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Mol Cell Biochem ; 438(1-2): 97-109, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28780751

RESUMO

Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA) which in some cell types play a pivotal role in agonist-induced increase in NADPH oxidase-derived [Formula: see text]production. Involvement of ADP ribosylation factor (Arf) in agonist-induced activation of PLD is known for smooth muscle cells of systemic arteries, but not in pulmonary artery smooth muscle cells (PASMCs). Additionally, role of cytohesin in this scenario is unknown in PASMCs. We, therefore, determined the involvement of Arf and cytohesin in U46619-induced stimulation of PLD in PASMCs, and the probable mechanism by which curcumin, a natural phenolic compound, inhibits the U46619 response. Treatment of PASMCs with U46619 stimulated PLD activity in the cell membrane, which was inhibited upon pretreatment with SQ29548 (Tp receptor antagonist), FIPI (PLD inhibitor), SecinH3 (inhibitor of cytohesins), and curcumin. Transfection of the cells with Tp, Arf-6, and cytohesin-1 siRNA inhibited U46619-induced activation of PLD. Upon treatment of the cells with U46619, Arf-6 and cytohesin-1 were translocated and associated in the cell membrane, which were not inhibited upon pretreatment of the cells with curcumin. Cytohesin-1 appeared to be necessary for in vitro binding of GTPγS with Arf-6; however, addition of curcumin inhibited binding of GTPγS with Arf-6 even in the presence of cytohesin-1. Our computational study suggests that although curcumin to some extent binds with Tp receptor, yet the inhibition of Arf6GDP to Arf6GTP conversion appeared to be an important mechanism by which curcumin inhibits U46619-induced increase in PLD activity in PASMCs.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Fatores de Ribosilação do ADP/metabolismo , Curcumina/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfolipase D/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 6 de Ribosilação do ADP , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Artéria Pulmonar/citologia
6.
Arch Biochem Biophys ; 633: 1-14, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822840

RESUMO

Treatment of human pulmonary artery smooth muscle cells (HPASMCs) with the thromboxane A2 receptor antagonist, SQ29548 inhibited U46619 stimulation of phospholipase D (PLD) and NADPH oxidase activities in the cell membrane. Pretreatment with apocynin inhibited U46619 induced increase in NADPH oxidase activity. The cell membrane contains predominantly PLD2 along with PLD1 isoforms of PLD. Pretreatment with pharmacological and genetic inhibitors of PLD2, but not PLD1, attenuated U46619 stimulation of NADPH oxidase activity. U46619 stimulation of PLD and NADPH oxidase activities were insensitive to BFA and Clostridium botulinum C3 toxin; however, pretreatment with secinH3 inhibited U46619 induced increase in PLD and NADPH oxidase activities suggesting a major role of cytohesin in U46619-induced increase in PLD and NADPH oxidase activities. Arf-1, Arf-6, cytohesin-1 and cytohesin-2 were observed in the cytosolic fraction, but only Arf-6 and cytohesin-1 were translocated to the cell membrane upon treatment with U46619. Coimmunoprecipitation study showed association of Arf-6 with cytohesin-1 in the cell membrane fraction. In vitro binding of GTPγS with Arf-6 required the presence of cytohesin-1 and that occurs in BFA insensitive manner. Overall, BFA insensitive Arf6-cytohesin1 signaling axis plays a pivotal role in U46619-mediated activation of PLD leading to stimulation of NADPH oxidase activity in HPASMCs.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Fatores de Ribosilação do ADP/genética , Fatores de Troca do Nucleotídeo Guanina/genética , NADPH Oxidases/genética , Fosfolipase D/genética , Vasoconstritores/farmacologia , ADP Ribose Transferases/farmacologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Acetofenonas/farmacologia , Antioxidantes/farmacologia , Toxinas Botulínicas/farmacologia , Brefeldina A/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácidos Graxos Insaturados , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Humanos , Hidrazinas/farmacologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/metabolismo , Cultura Primária de Células , Inibidores da Síntese de Proteínas/farmacologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/antagonistas & inibidores , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais , Triazóis/farmacologia
7.
J Neurochem ; 139(6): 1102-1112, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27787889

RESUMO

Cytohesin family proteins act as guanine nucleotide exchange factors (GEFs) for the ADP-ribosylation factor family of small GTP-binding proteins. Aplysia Sec7 (ApSec7), a member of the cytohesin family in Aplysia, plays key roles in neurite outgrowth in Aplysia neurons. Although ApSec7 has a conserved coiled-coil (CC) domain, its role was not clear. In this study, we found that the CC domain of ApSec7 and ARNO/cytohesin 2 are involved in homodimer formation, leading to efficient plasma membrane targeting of ApSec7 and ARNO/cytohesin 2 in HEK293T cells. Therefore, deletion of the CC domain of ApSec7 and ARNO/cytohesin 2 may result in a loss of dimerization and reduce plasma membrane localization. In addition, the CC domains of ApSec7 and ARNO/cytohesin 2 have partially or fully CRM1-dependent nuclear export signals, respectively. Taken together, our results suggest that the CC domain of cytohesin family proteins, including ApSec7 and ARNO/cytohesin 2, has dual roles in intracellular targeting: increased plasma membrane targeting through homodimer formation and nuclear exclusion through either a CRM1-dependent or a CRM1-independent pathway.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Neurônios/metabolismo , Multimerização Proteica/fisiologia , Sequência de Aminoácidos , Animais , Aplysia , Células Cultivadas , Células HEK293 , Humanos , Ligação Proteica/fisiologia
8.
Biochim Biophys Acta ; 1837(6): 857-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24508215

RESUMO

The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , Modelos Moleculares , Nanotecnologia , Conformação Proteica , ATPases Vacuolares Próton-Translocadoras/química
9.
Biochem Biophys Res Commun ; 460(3): 819-25, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25824033

RESUMO

In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Bainha de Mielina/fisiologia , Animais , Sequência de Bases , Primers do DNA , Feminino , Proteínas Ativadoras de GTPase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase
10.
Sci Rep ; 14(1): 13333, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858421

RESUMO

Mammalian cardiomyocytes (CMs) mostly become polyploid shortly after birth. Because this feature may relate to several aspects of heart biology, including regeneration after injury, the mechanisms that cause polyploidy are of interest. BALB/cJ and BALB/cByJ mice are highly related sister strains that diverge substantially in CM ploidy. We identified a large deletion in the Cyth1 gene that arose uniquely in BALB/cByJ mice that creates a null allele. The deletion also results in ectopic transcription of the downstream gene Dnah17, although this transcript is unlikely to encode a protein. By evaluating the natural null allele from BALB/cByJ and an engineered knockout allele in the C57BL/6J background, we determined that absence of Cyth1 does not by itself influence CM ploidy. The ready availability of BALB/cByJ mice may be helpful to other investigations of Cyth1 in other biological processes.


Assuntos
Camundongos Endogâmicos BALB C , Miócitos Cardíacos , Poliploidia , Animais , Camundongos , Alelos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação com Perda de Função , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo
11.
Ear Nose Throat J ; 101(2_suppl): 1S-7S, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393815

RESUMO

BACKGROUND: ARF nucleotide-binding site opener (ARNO) is a guanine nucleotide-exchange factor for ADP-ribosylation factor proteins. ARF nucleotide-binding site opener also binds MyD88, and small-molecule inhibition of ARNO reduces inflammation in animal models of inflammatory arthritis and acute inflammation. However, whether genetic deletion of Arno in mice reduces pathologic inflammation has not yet been reported. Furthermore, its role in the nasal cavity has yet to be investigated. OBJECTIVE: To generate Arno knockout mice and to determine whether genetic loss of ARNO reduces eosinophilic inflammation in the ovalbumin (OVA) murine model of rhinitis. METHODS: Arno knockout mice were generated and wild type and knockout littermates were subjected to the OVA-induced mouse model of rhinosinutitis. Eosinophilic inflammation was assessed through immunofluorescent quantification of EMBP+ eosinophils in the septal mucosa and cytokine expression was assessed by quantitative polymerase chain reaction. RESULTS: Arno knockout mice are viable and fertile without any noted deficits. Arno wild type and knockout mice subjected to the OVA-induced model of rhinitis demonstrated an average of 314.5 and 153.8 EMBP+ cells per mm2 septal tissue, respectively (P < .05). Goblet cells per mm of basal lamina were assessed via Alcian blue and there was no statistically significant difference between Arno wild type and knockout mice. Ovalbumin-induced expression of interleukin-5 (IL-5) was significantly reduced in Arno knockout mice (P < .05). There was no statistically significant reduction in IL-4, IL-13, or eotaxin-1 expression. CONCLUSIONS: These data demonstrate that deletion of Arno reduces eosinophilic inflammation and IL-5 expression in an OVA-induced model of rhinitis.


Assuntos
Interleucina-5 , Rinite , Animais , Modelos Animais de Doenças , Proteínas Ativadoras de GTPase , Inflamação/genética , Interleucina-5/genética , Interleucina-5/metabolismo , Camundongos , Camundongos Knockout , Rinite/genética
12.
Front Immunol ; 12: 809896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095899

RESUMO

The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1ß. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.


Assuntos
Movimento Celular/genética , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/genética , Imunomodulação/genética , Membrana Sinovial/citologia , Fator 6 de Ribosilação do ADP/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Interleucina-1beta/metabolismo , Camundongos , Fosforilação , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
13.
J Pers Med ; 11(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063287

RESUMO

BACKGROUND: Systemic sclerosis (Ssc) is an autoimmune disease with incomplete known physiopathology. There is a high number of candidate proteomic biomarkers for Ssc that have not yet been confirmed on independent Ssc cohorts. The aim of the study was to confirm circulating S100A6, calumenin, and cytohesin 2 as biomarkers for Ssc. METHODS: 53 Ssc patients and 26 age- and gender-matched controls were included. Serum S100A6, calumenin, and cytohesin 2 were evaluated with commercial ELISA kits. Associations between serum expression and clinical Ssc characteristics were evaluated. RESULTS: Serum calumenin, S100A6, and cytohesin 2 were higher in Ssc patients compared to controls. Calumenin associated with extensive cutaneous fibrosis, frequency of Raynaud phenomenon, and low complement level, and had a tendency to be higher in Ssc patients with pulmonary fibrosis. S100A6 correlated with the number of active digital ulcers. Serum cytohesin 2 levels were higher in patients with teleangiectasia and associated with pulmonary artery pressure. CONCLUSIONS: Serum calumenin, S100A6, and cytohesin 2 were confirmed as biomarkers on an independent group of Ssc patients. Calumenin had the best predictive capacity for cutaneous Ssc manifestations. Future studies are needed to evaluate the prognostic value of these biomarkers and evaluate them as possible therapeutic targets.

14.
J Agric Food Chem ; 69(24): 6810-6819, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34096300

RESUMO

In the dairy industry, glutamine (Gln) is often used as a feed additive to increase milk yield and quality; however, the molecular regulation underneath needs further clarification. Here, with bovine mammary epithelial cells (BMECs), the effects and mechanisms of Gln on cell growth and casein synthesis were assessed. When Gln was added or depleted from BMECs, both cell growth and ß-casein (CSN2) expression were increased or decreased, respectively. Overexpressing or inhibiting the mechanistic target of rapamycin (mTOR) revealed that Gln regulated cell growth and CSN2 synthesis through the mTORC1 pathway. A similar intervention of ADP-ribosylation factor 1 (Arf1) uncovered that Gln activated the mTORC1 pathway through Arf1. We next observed that both guanine nucleotide exchange factors, Cytohesin-1/2/3 (CYTH1/2/3, CYTHs) and ADP-ribosylation factor GTPase activating protein 1 (ARFGAP1), interacted with Arf1. Inhibiting CYTHs or ARFGAP1 showed that Gln supplement or depletion activated or inactivated Arf1 through CYTHs or ARFGAP1, respectively. Collectively, this study demonstrated that Gln positively regulated cell growth and casein synthesis in BMECs, which works through the CYTHs/ARFGAP1-Arf1-mTORC1 pathway. These results greatly enhanced current understanding regarding the regulation of the mTOR pathway and provided new insights for the processes of cell growth and casein synthesis by amino acids, particularly Gln.


Assuntos
Fator 1 de Ribosilação do ADP , Caseínas , Animais , Caseínas/metabolismo , Bovinos , Células Epiteliais/metabolismo , Glutamina , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais
15.
Viruses ; 12(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963276

RESUMO

Herpes simplex viruses not only infect a variety of different cell types, including dendritic cells (DCs), but also modulate important cellular functions in benefit of the virus. Given the relevance of directed immune cell migration during the initiation of potent antiviral immune responses, interference with DC migration constitutes a sophisticated strategy to hamper antiviral immunity. Notably, recent reports revealed that HSV-1 significantly inhibits DC migration in vitro. Thus, we aimed to investigate whether HSV-2 also modulates distinct hallmarks of DC biology. Here, we demonstrate that HSV-2 negatively interferes with chemokine-dependent in vitro migration capacity of mature DCs (mDCs). Interestingly, rather than mediating the reduction of the cognate chemokine receptor expression early during infection, HSV-2 rapidly induces ß2 integrin (LFA-1)-mediated mDC adhesion and thereby blocks mDC migration. Mechanistically, HSV-2 triggers the proteasomal degradation of the negative regulator of ß2 integrin activity, CYTIP, which causes the constitutive activation of LFA-1 and thus mDC adhesion. In conclusion, our data extend and strengthen recent findings reporting the reduction of mDC migration in the context of a herpesviral infection. We thus hypothesize that hampering antigen delivery to secondary lymphoid organs by inhibition of mDC migration is an evolutionary conserved strategy among distinct members of Herpesviridae.


Assuntos
Movimento Celular , Células Dendríticas/patologia , Células Dendríticas/virologia , Herpesvirus Humano 2/patogenicidade , Adesão Celular , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Herpesvirus Humano 2/imunologia , Humanos , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas Virais/genética
17.
Small GTPases ; 9(3): 242-259, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27562622

RESUMO

Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Proteínas de Transporte/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Proteínas de Membrana/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/deficiência , Fator 1 de Ribosilação do ADP/genética , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cães , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células Madin Darby de Rim Canino , Transporte Proteico/efeitos dos fármacos
18.
Structure ; 26(1): 106-117.e6, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29276036

RESUMO

Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization and conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.


Assuntos
Fatores de Ribosilação do ADP/química , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Trifosfato/química , Domínios de Homologia à Plecstrina , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes de Fusão/química , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Animais , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
19.
Data Brief ; 15: 234-239, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29022003

RESUMO

Cytohesin-1 is the guanine-nucleotide exchange factor of Arf6, a small GTPase of Arf family, and participates in cellular morphological changes. Knockout mice of cytohesin-1 exhibit decreased myelination of neuronal axons in the peripheral nervous system (PNS) "Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development (Yamauchi et al., 2012) [1]". Herein we provide the data regarding decreased phosphorylation levels of protein kinases involved in two major myelination-related kinase cascades in cytohesin-1 knockout mice.

20.
Curr Biol ; 27(15): 2260-2270.e5, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28736167

RESUMO

In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Reguladores de Proteínas de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Transdução de Sinais , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA