RESUMO
The sequestration of CO2 in coal seams has become an effective way to curb greenhouse-gas emissions. Coal mechanics and permeability properties are key factors affecting the safe sequestration of CO2 in coal seams, and both are significantly affected by the CO2 injection pressure. In this study, triaxial compression-permeability tests were conducted on coal under varying CO2 and limited confining pressures using a measurement system to determine the coupled mechanical properties and adsorption permeability of coal. The effects of CO2 pressure on the mechanical properties and evolution of coal permeability were investigated. A three-dimensional statistical damage constitutive model of coal that considers CO2 adsorption damage was established. The results showed that the stress-strain curve of the coal was divided into four stages. During the first two stages, the amplitudes of the permeability changes were small, whereas at the peak stress point, a permeability "jump" phenomenon occurred, after which an increase in stress resulted in a slower amplitude increase in permeability. The CO2 pressure had an evident damage-deterioration effect on the mechanical properties of the coal samples, and the primary failure characteristic was shearing damage. The higher the CO2 pressure, the higher the degree of internal fragmentation and fracture network complexity of the coal body. During the triaxial compression-permeability experiment, the normalized permeability of the coal samples tended to increase slowly, followed by a rapid increase and back to a slow increase. However, with increasing CO2 pressure, the initial permeability of the coal samples decreased, whereas the normalized permeability increased sharply. The rationality and accuracy of the constitutive model were verified by comparing the established constitutive model and test stress-strain curves of the coal samples. The results of this study can provide theoretical references for CO2 geological storage and facilitate the selection of appropriate CO2 injection pressures.
RESUMO
BACKGROUND: The intervertebral disc exhibits not only strain rate dependence (viscoelasticity), but also significant asymmetry under tensile and compressive loads, which is of great significance for understanding the mechanism of lumbar disc injury under physiological loads. OBJECTIVE: In this study, the strain rate sensitive and tension-compression asymmetry of the intervertebral disc were analyzed by experiments and constitutive equation. METHOD: The Sheep intervertebral disc samples were divided into three groups, in order to test the strain rate sensitive mechanical behavior, and the internal displacement as well as pressure distribution. RESULTS: The tensile stiffness is one order of magnitude smaller than the compression stiffness, and the logarithm of the elastic modulus is approximately linear with the logarithm of the strain rate, showing obvious tension-compression asymmetry and rate-related characteristics. In addition, the sensitivity to the strain rate is the same under these two loading conditions. The stress-strain curves of unloading and loading usually do not coincide, and form a Mullins effect hysteresis loop. The radial displacement distribution is opposite between the anterior and posterior region, which is consistent with the stress distribution. By introducing the damage factor into ZWT constitutive equation, the rate-dependent viscoelastic and weakening behavior of the intervertebral disc can be well described.
Assuntos
Força Compressiva , Disco Intervertebral , Estresse Mecânico , Animais , Disco Intervertebral/fisiologia , Ovinos , Fenômenos Biomecânicos , Resistência à Tração , Suporte de Carga , ElasticidadeRESUMO
In order to analyze the early mechanical properties and damage characteristics of phosphogypsum-based cemented backfill (PCB) under hydrochemical action, hydrochemical erosion and uniaxial compression strength (UCS) tests were carried out with HCl solution, NaOH solution, and water respectively. The damage degree is defined by taking the effective bearing area of the soluble cements of PCB under hydrochemistry action as the chemical damage variable, and the modified damage parameter α, which reflects the damage development characteristics, is introduced to construct the damage constitutive model of PCB considering chemical damage and load damage, and the theoretical model is verified with the experimental results. The results show that the damage constitutive model curves of PCB under different hydrochemical action are in good agreement with the experimental results, which verifies the correctness of the theoretical model. When the modified damage parameter α decreases from 1.0 to 0.8, the residual load-bearing capacity of PCB gradually increases, with the damage values of PCB samples in HCl solution and water gradually increasing before the peak and decreasing after the peak, while the damage values of PCB samples in NaOH solution show an overall increasing trend before and after the peak. The slope of the post peak curve of PCB decreases with increasing model parameter n. The results of the study can provide theoretical support and practical guidance for the strength design, long-term erosion deformation, and prediction of PCB in hydrochemical environment.
Assuntos
Sulfato de Cálcio , Fósforo , Hidróxido de Sódio , Modelos TeóricosRESUMO
The stress of a coal seam increases with an increase in the mining depth, which makes the failure mechanism of a coal mass more complex. To reveal the deformation and failure law of deep coal, a series of triaxial experiments was carried out via laboratory experiments and numerical simulation experiments to analyze the influence of the confining stress on the nonlinear failure characteristics of coal. Based on the crack-propagation model, the values for the inelastic flexibility S1 and the damage variable D were calculated. The results showed that the value of S1 decreased with an increase in the confining stress, which indicated that the increase in the confining pressure could inhibit the crack propagation and that the inhibitory effect was more obvious when the confining pressure increased in a small range of 4 to 12 MPa. The damage variable decreased with an increase in the confining pressure at the yield point; moreover, with an increase in the initial confining pressure, the damage rate gradually decreased. The coal body changed from the compression state to the expansion state when moving from the yield point to the peak point, and the compression value of the yield point and the dilation value of the peak point increased with the increase in the confining pressure. After the coal body entered the yield stage, the change in the confining pressure had a more significant effect on the damage to the coal body.
Assuntos
Carvão Mineral , Mineração , Pressão , LaboratóriosRESUMO
Existing rock material damage models always ignore the initial damage characteristics of rock materials, and the actual rock materials have initial damage characteristics. To consider the rock's initial damage characteristics, a series of compression tests for yellow sandstone was carried out. First, the acoustic emission characteristics and damage model of yellow sandstone, considering the loading rates, were analyzed. Second, an initial damage model, which can better describe the initial damage characteristics of yellow sandstone materials, is presented. The research results show that the strength and elastic modulus of yellow sandstone depends on the loading rate, and increases as the loading rate increases.
RESUMO
The compressive stress-strain behaviors of early-aged cementitious grout specimens were experimentally investigated, and the differences of characteristic parameters of the stress-strain curve and the energy evolution law of each specimen under uniaxial compression were discussed in this study. The results indicate that with an increase in the specimen age, the peak stress, peak strain, ultimate strain, elastic modulus, peak secant modulus, strain ductility coefficient, and energy-dissipation coefficient of the prism specimens gradually improved. Additionally, a comparison of the test results of cementitious grout specimens and concrete specimens with the same age reveals that the peak stress, peak strain, and ultimate strain of cementitious grout specimens were greater than that of concrete specimens, the elastic modulus and peak secant modulus of the specimens were less than that of concrete specimens, and the strain ductility coefficient and energy-dissipation coefficient show no consistent conclusions with respect to the material type. Moreover, comparing the energy evolution curves of specimens with different specimen ages shows that the decrease rate of the elastic strain rate and the increase rate of the dissipated energy rate gradually decreased with the increase in specimen age. The elastic strain rate and dissipated energy rate of the CGM-270 specimen and control specimens were greater than that of other specimens, and the decrease rate of the elastic strain rate was less than that of other specimens. Based on the statistical damage theory, a statistically stochastic damage constitutive model was derived by considering the characteristics of cementitious grout according to the compression test results. A comparison of the proposed models with the experimental results indicated that the proposed stress-strain constitutive models were sufficiently accurate.
RESUMO
The void compression stage causes porous cement mortar to present special mechanical properties. In order to study the compaction behavior and the damage evolution of the porous material, cement mortar specimens with an average porosity of 26.8% were created and cyclic uniaxial compression tests were carried out. The irreversible strain accumulated in the tests was obtained by cyclic loading and unloading. As the secant modulus of the porous cement mortar increases with stress in the pre-peak deformation stage, its damage variable is defined according to the accumulated irreversible strain instead of modulus degradation. The strain-based damage indicator fitted with the damage evolution law is characterized by linear accumulation at the beginning and has an acceleration rate of about 0.3 in the pre-peak deformation stage, and the damage value converges to 1 at failure. Based on the Weibull distribution, a constitutive damage model of porous cement mortar is improved by considering both the damage evolution during the plastic deformation stage and the mechanical behavior in the compaction stage. The theoretical envelope curves obtained by the constitutive model are in good agreement with the experimental envelope curves of cyclic uniaxial compression in the compaction and pre-peak stages, and the average absolute error is about 0.54 MPa in the entire pre-peak stage, so the proposed damage constitutive model can characterize the damage-induced mechanical properties of porous cement mortar in the compaction and pre-peak stages.
RESUMO
In order to study the mechanical behavior and energy dissipation of architectural membrane materials under multistage cyclic loading, the deformation behavior, energy dissipation, and damage characteristics of four kinds of warp-knitted and woven polyvinyl chloride (PVC) membrane materials were analyzed using multistage cyclic loading experiments. The results show that, compared with the uniaxial tensile strength, the peak values of the cyclic loading and unloading of the four material samples are lower in the warp direction but higher in the fill (weft) direction. Under multistage cyclic loading, the loading and unloading moduli of the warp knitting membrane increase with the increase in fabric density. At the same fabric density, the loading modulus and the unloading modulus are smaller than those of the warp knitting material. The total absorbed strain energy, elastic strain energy, and dissipation energy of the fill samples are higher than those of the warp samples at a low load level but lower than those at a high load level. PVC membrane materials' use strength should be controlled below a 15% stress level under long-term external force loading. In the cyclic loading process, the four PVC membrane materials are viscoelastic-plastic, so it is reasonable to define the damage variable based on the accumulation of plastic deformation.
RESUMO
Concrete will deteriorate and damage under sulfate attack.In order to study the degradation characteristics of HDC under sulfate attack, the mechanical properties of high-ductility concrete (HDC) were investigated using the uniaxial compressive strength test of HDC specimens soaked in different concentrations of sulfate solution and subjected to different times of dry-wet cycles. The variations in the compressive strength, loss rate of compressive strength, and the max compressive strength under the action of sulfate attack and dry-wet cycles were analyzed. The analytical expressions of damage variables were given. SEM was used to observe the microstructure of the sample, and the microdamage mechanism of the HDC was explored. The deterioration of the HDC was found to be the result of the combined action of sulfate attack and dry-wet cycles and was caused by physical attack and chemical attack. PVA prevented the rapid development of deterioration. On the basis of the change of compressive strength, the damage variable was established to quantitatively describe the degree of damage to HDC. The experimental results showed that with the increase in the number of dry-wet cycles, the compressive strength of HDC generally increased first and then decreased. As the concentration of the sulfate solution increased, the loss rate of the compressive strength of HDC generally increased and the max compressive strength gradually decreased. With the increase inthe number of dry-wet cycles, HDC first showed self-compacting characteristics and then gradually became destroyed. Compared with ordinary concrete (OC), HDC is superior to OC in sulfate resistance and dry-wet cycles. This study provided a test basis for the engineering application of HDC in sulfate attack and dry-wet cycles environment.
RESUMO
Based on Lemaitre's strain equivalence hypothesis theory, it is assumed that the strength of acid-etching rock microelements under the coupling effect of temperature and confining pressure follows the Weibull distribution. Under the hypothesis that micro-element damage meets the D-P criterion and based on continuum damage mechanics and statistical theory, chemical damage variables, thermal damage variables and mechanical damage variables were introduced in the construction of damage evolution equations and constitutive models for acid-etching rocks considering the coupled effects of temperature and confining pressure. The required model parameters were obtained by theoretical derivation, and the model was verified based on the triaxial compression test data of granite. Comparing the experimental stress-strain curve with the theoretical stress-strain curve, the results show that they were in good agreement. By selecting reasonable model parameters, the damage statistical constitutive model can accurately reflect the stress-strain curve characteristics of rock in the process of triaxial compression. The comparison between the experimental and theoretical results also verifies the reasonableness and reliability of the model. This model provides a new rock damage statistical constitutive equation for the study of rock mechanics and its application in engineering, and has certain reference significance for rock underground engineering.
RESUMO
Non-destructive testing (NDT) methods are an important means to detect and assess rock damage. To better understand the accuracy of NDT methods for measuring damage in sandstone, this study compared three NDT methods, including ultrasonic testing, electrical impedance spectroscopy (EIS) testing, computed tomography (CT) scan testing, and a destructive test method, elastic modulus testing. Sandstone specimens were subjected to different levels of damage through cyclic loading and different damage variables derived from five different measured parameters-longitudinal wave (P-wave) velocity, first wave amplitude attenuation, resistivity, effective bearing area and the elastic modulus-were compared. The results show that the NDT methods all reflect the damage levels for sandstone accurately. The damage variable derived from the P-wave velocity is more consistent with the other damage variables, and the amplitude attenuation is more sensitive to damage. The damage variable derived from the effective bearing area is smaller than that derived from the other NDT measurement parameters. Resistivity provides a more stable measure of damage, and damage derived from the acoustic parameters is less stable. By developing P-wave velocity-to-resistivity models based on theoretical and empirical relationships, it was found that differences between these two damage parameters can be explained by differences between the mechanisms through which they respond to porosity, since the resistivity reflect pore structure, while the P-wave velocity reflects the extent of the continuous medium within the sandstone.
RESUMO
Biomechanical properties of human gallbladder (GB) wall in passive state can be valuable to diagnosis of GB diseases. In the article, an approach for identifying damage effect in GB walls during uniaxial tensile test was proposed and a strain energy function with the damage effect was devised as a constitutive law phenomenologically. Scalar damage variables were introduced respectively into the matrix and two families of fibres to assess the damage degree in GB walls. The parameters in the constitutive law with the damage effect were determined with a custom MATLAB code based on two sets of existing uniaxial tensile test data on human and porcine GB walls in passive state. It turned out that the uniaxial tensile test data for GB walls could not be fitted properly by using the existing strain energy function without the damage effect, but could be done by means of the proposed strain energy function with the damage effect involved. The stresses and Young moduli developed in two families of fibres were more than thousands higher than the stresses and Young's moduli in the matrix. According to the damage variables estimated, the damage effect occurred in two families of fibres only. Once the damage occurs, the value of the strain energy function will decrease. The proposed constitutive laws are meaningful for finite element analysis on human GB walls.