Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576159

RESUMO

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Assuntos
Cicatriz , Gliose , Infarto da Artéria Cerebral Média , Animais , Gliose/metabolismo , Gliose/patologia , Camundongos , Cicatriz/metabolismo , Cicatriz/patologia , Infarto da Artéria Cerebral Média/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Masculino , Camundongos Endogâmicos C57BL , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Obesidade/metabolismo , Obesidade/complicações , Proteínas da Matriz Extracelular/metabolismo , Hiperglicemia/metabolismo
2.
FASEB J ; 37(3): e22794, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753399

RESUMO

Diabetic kidney disease (DKD) is one of the most serious complications of diabetes mellitus (DM) and the main cause of end-stage renal failure. However, the pathogenesis of DKD is complicated. In this study, we found that miR-124-3p plays a key role in regulating renal mitochondrial function and explored its possible mechanism in DKD progression by performing a series of in vitro and in vivo experiments. Decreased expression of miR-124-3p was found in db/db mice compared to db/m mice. Moreover, miR-124-3p down-regulated FOXQ1 by targeting FOXQ1 mRNA 3'-UTR in NRK-52E cells. Also, an increase in FOXQ1 and down-regulation of Sirt4 were found in db/db mouse kidney and renal tubular epithelial cells cultured with high glucose and high lipid. Overexpression of FOXQ1 could further down-regulate the expression of Sirt4 and aggravate the damage of mitochondria. Conversely, the knockdown of the FOXQ1 gene induced Sirt4 expression and partially restored mitochondrial function. To verify the effects of miR-124-3p on Sirt4 and mitochondria, we found that miR-124-3p mimics could up-regulate Sirt4 and inhibit ROS production and MitoSOX, thus restoring the number and morphology of mitochondria. These results showed that under high-glucose and high-lipid conditions, the down-regulation of miR-124-3p induces FOXQ1 in renal tubular epithelial cells, which in turn suppresses Sirt4 and leads to mitochondrial dysfunction, promoting the development of DKD.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Nefropatias Diabéticas/metabolismo , Camundongos Endogâmicos , Glucose/metabolismo , Mitocôndrias/metabolismo , Lipídeos/farmacologia
3.
Cell Biol Int ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937979

RESUMO

Type 2 diabetic osteoporosis (T2DOP) is a skeletal metabolic syndrome characterized by impaired bone remodeling due to type 2 diabetes mellitus, and there are drawbacks in the present treatment. Osteoking (OK) is widely used for treating fractures and femoral head necrosis. However, OK is seldom reported in the field of T2DOP, and its role and mechanism of action need to be elucidated. Consequently, this study investigated whether OK improves bone remodeling and the mechanisms of diabetes-induced injury. We used db/db mice as a T2DOP model and stimulated MC3T3-E1 cells (osteoblast cell line) with high glucose (HG, 50 mM) and advanced glycation end products (AGEs, 100 µg/mL), respectively. The effect of OK on T2DOP was assessed using a combined 3-point mechanical bending test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay. The effect of OK on enhancing MC3T3-E1 cell differentiation and mineralization under HG and AGEs conditions was assessed by an alkaline phosphatase activity assay and alizarin red S staining. The AGEs/insulin-like growth factor-1(IGF-1)/ß-catenin/osteoprotegerin (OPG) pathway-associated protein levels were assayed by western blot analysis and immunohistochemical staining. We found that OK reduced hyperglycemia, attenuated bone damage, repaired bone remodeling, increased tibial and femoral IGF-1, ß-catenin, and OPG expression, and decreased receptor activator of nuclear kappa B ligand and receptor activator of nuclear kappa B expression in db/db mice. Moreover, OK promoted the differentiation and mineralization of MC3T3-E1 cells under HG and AGEs conditions, respectively, and regulated the levels of AGEs/IGF-1/ß-catenin/OPG pathway-associated proteins. In conclusion, our results suggest that OK may lower blood glucose, alleviate bone damage, and attenuate T2DOP, in part through activation of the AGEs/IGF-1/ß-catenin/OPG pathway.

4.
Appl Microbiol Biotechnol ; 108(1): 183, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285241

RESUMO

Fibronectin (FN) and collagen are vital components of the extracellular matrix (ECM). These proteins are essential for tissue formation and cell alignment during the wound healing stage. In particular, FN interacts with collagens to activate various intracellular signaling pathways to maintain ECM stability. A novel recombinant extra domain-B fibronectin (EDB-FN)-COL3A1 fusion protein (rhFEB) was designed to mimic the ECM to promote chronic and refractory skin ulcer wound healing. rhFEB significantly enhanced cell adhesion and migration, vascular ring formation, and the production of new collagen I (COL1A1) in vitro. rhFEB decreased M1 macrophages and further modulated the wound microenvironment, which was confirmed by the treatment of db/db mice with rhFEB. Accelerated wound healing was shown during the initial stages in rhFEB-treated db/db mice, as was enhanced follicle regeneration, re-epithelialization, collagen deposition, granulation, inflammation, and angiogenesis. The wound chronicity of diabetic foot ulcers (DFUs) remains the main challenge in current and future treatment. rhFEB may be a candidate molecule for regulating M1 macrophages during DFU healing. KEY POINTS: • A recombinant protein EDB-FN-collagen III (rhFEB) was highly expressed in Escherichia coli • rhFEB protein induces COL1A1 secretion in human skin fibroblasts • rhFEB protein accelerates diabetic wound healing.


Assuntos
Fibronectinas , Pele , Humanos , Animais , Camundongos , Cicatrização , Matriz Extracelular , Escherichia coli/genética , Colágeno
5.
Ecotoxicol Environ Saf ; 273: 116102, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382346

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD). Understanding the progressive etiology of DN is critical for the development of effective health policies and interventions. Recent research indicated that polystyrene microplastics (PS-MPs) contaminate our diets and accumulate in various organs, including the liver, kidneys, and muscles. METHODS: In this study, ten-week-old db/db mice and db/m mice were fed. Besides, db/db mice were divided into two groups: PS-MPs group (oral administration of 0.5 µm PS-MPs) and an H2O group, and they were fed for three months. A type II diabetes model was established using db/db mice to investigate the effects of PS-MPs on body weight, blood glucose level, renal function, and renal fibrosis. RESULTS: The results demonstrated that PS-MPs significantly exacerbated various biochemical indicators of renal tissue damage, including fasting blood glucose, serum creatinine, blood urea nitrogen, and blood uric acid. Additionally, PS-MPs worsened the pathological alterations and degree of fibrosis in renal tissue. An increased oxidative stress state and elevated levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and monocyte chemoattractant protein-1 (MCP-1) were identified. Furthermore, PS-MPs significantly enhanced renal fibrosis by inhibiting the transition from epithelial cells to mesenchymal cells, specifically through the inhibition of the TGF-ß/Smad signaling pathway. The expression levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, and cleaved Caspase-1, which are inflammasome proteins, were significantly elevated in the PS-MPs group. CONCLUSION: The findings suggested that PS-MPs could aggravate kidney injury and renal fibrosis in db/db mice by promoting NLRP3/Caspase-1 and TGF-ß1/Smads signaling pathways. These findings had implications for elucidating the role of PS-MPs in DN progression, underscoring the necessity for additional research and public health interventions.

6.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928391

RESUMO

Oil-Gan is the fruit of the genus Phyllanthus emblica L. The fruits have excellent effects on health care and development values. There are many methods for the management of diabetic nephropathy (DN). However, there is a lack of effective drugs for treating DN throughout the disease course. The primary aim of this study was to examine the protective effects (including analyses of urine and blood, and inflammatory cytokine levels) and mechanisms of the ethyl acetate extract of P. emblica (EPE) on db/db mice, an animal model of diabetic nephropathy; the secondary aim was to examine the expression levels of p- protein kinase Cα (PKCα)/t-PKCα in the kidney and its downregulation of vascular endothelial growth factor (VEGF) and fibrosis gene transforming growth factor-ß1 (TGF-ß1) by Western blot analyses. Eight db/m mice were used as the control group. Forty db/db mice were randomly divided into five groups. Treatments included a vehicle, EPE1, EPE2, EPE3 (at doses of 100, 200, or 400 mg/kg EPE), or the comparative drug aminoguanidine for 8 weeks. After 8 weeks of treatment, the administration of EPE to db/db mice effectively controlled hyperglycemia and hyperinsulinemia by markedly lowering blood glucose, insulin, and glycosylated HbA1c levels. The administration of EPE to db/db mice decreased the levels of BUN and creatinine both in blood and urine and reduced urinary albumin excretion and the albumin creatine ratio (UACR) in urine. Moreover, EPE treatment decreased the blood levels of inflammatory cytokines, including kidney injury molecule-1 (KIM-1), C-reactive protein (CRP), and NLR family pyrin domain containing 3 (NLRP3). Our findings showed that EPE not only had antihyperglycemic effects but also improved renal function in db/db mice. A histological examination of the kidney by immunohistochemistry indicated that EPE can improve kidney function by ameliorating glomerular morphological damage following glomerular injury; alleviating proteinuria by upregulating the expression of nephrin, a biomarker of early glomerular damage; and inhibiting glomerular expansion and tubular fibrosis. Moreover, the administration of EPE to db/db mice increased the expression levels of p- PKCα/t-PKCα but decreased the expression levels of VEGF and renal fibrosis biomarkers (TGF-ß1, collagen IV, p-Smad2, p-Smad3, and Smad4), as shown by Western blot analyses. These results implied that EPE as a supplement has a protective effect against renal dysfunction through the amelioration of insulin resistance as well as the suppression of nephritis and fibrosis in a DN model.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Modelos Animais de Doenças , Phyllanthus emblica , Extratos Vegetais , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Phyllanthus emblica/química , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Acetatos/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Quinase C-alfa/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos
7.
J Appl Biomed ; 22(2): 74-80, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38912862

RESUMO

Myo-inositol (MI), present in a variety of foods, is essential in several important processes of cell physiology. In this study, we explored the protective effects of MI against hyperglycemia and dyslipidemia in db/db mice, a typical animal model of type 2 diabetes mellitus (T2DM). MI supplement effectively suppressed the high plasma glucose and insulin levels and markedly relieved the insulin resistance (IR) in the db/db mice, comparable to metformin's effects. In MIN6 pancreatic ß cells, MI also restrained the upsurge of insulin secretion stimulated by high-concentration glucose but had no impact on the promoted cell proliferation. Moreover, MI abated the enhanced plasma triglyceride and total cholesterol levels in the db/db mice. Notably, the lipid droplet formation of mesenchymal stem cells (MSCs) from db/db mice was significantly diminished after the treatment of MI, indicating that MI could effectively inhibit the differentiation of db/db mouse MSCs into adipocytes. However, MI regretfully failed to control obesity in db/db mice. This work proved that MI significantly helped db/db mice's metabolic disorders, indicating that MI has potential as an effective adjunctive treatment for hyperglycemia and dyslipidemia in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Dislipidemias , Inositol , Resistência à Insulina , Animais , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Inositol/farmacologia , Inositol/uso terapêutico , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Insulina/metabolismo , Insulina/sangue , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3600-3607, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39041132

RESUMO

Based on the Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway, this study observed the regulatory effect of ginsenoside Rb_1(Rb_1) on liver lipid metabolism in db/db obese mice and explored its potential mechanism. Thirty 6-week-old male db/db mice were randomly divided into a model group, a metformin group, and Rb_1 groups with low, medium, and high doses, with six mice in each group. Additionally, six age-matched male db/m mice were assigned to the normal group. The intervention lasted for five weeks. Body weight, fasting blood glucose, and food intake were mea-sured weekly. At the end of the experiment, serum lipid levels and liver function were detected. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in liver tissue. Real-time quantitative PCR and immunohistochemistry on paraffin sections were used to detect the mRNA and protein expression of TLR4, MyD88, and NF-κB p65. RESULTS:: showed that compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, epididymal fat mass, epididymal fat index, total cholesterol, low-density lipoprotein cholesterol, liver function parameters, and fasting blood glucose levels. Liver lipid accumulation significantly increased, along with elevated mRNA and protein expression of TLR4, MyD88, and NF-κB p65 in the liver. After Rb_1 treatment, the above-mentioned parameters in the intervention groups showed significant reversals. In conclusion, Rb_1 can improve obesity and obesity-related hepatic steatosis in mice while regulating abnormal lipid and glucose meta-bolism. Mechanistically, Rb_1 may improve liver steatosis in db/db obese mice by modulating the TLR4/MyD88/NF-κB signaling pathway.


Assuntos
Fígado Gorduroso , Ginsenosídeos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/administração & dosagem , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/genética , Camundongos Obesos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Humanos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia
9.
Clin Exp Immunol ; 214(2): 197-208, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37498307

RESUMO

The interplay between platelets and leukocytes contributes to the pathogenesis of inflammation, thrombosis, and cardiovascular diseases (CVDs) in type 2 diabetes (T2D). Our recent studies described alpha-ketoglutarate (αKG), a Krebs cycle intermediate metabolite as an inhibitor to platelets and leukocytes activation by suppressing phosphorylated-Akt (pAkt) through augmentation of prolyl hydroxylase-2 (PHD2). Dietary supplementation with a pharmacological concentration of αKG significantly inhibited lung inflammation in mice with either SARS-CoV-2 infection or exposed to hypoxia treatment. We therefore investigated if αKG supplementation could suppress hyperactivation of these blood cells and reduce thromboinflammatory complications in T2D. Our study describes that dietary supplementation with αKG (8 mg/100 g body wt. daily) for 7 days significantly reduced the activation of platelets and leukocytes (neutrophils and monocytes), and accumulation of IL1ß, TNFα, and IL6 in peripheral blood of T2D mice. αKG also reduced the infiltration of platelets and leukocytes, and accumulation of inflammatory cytokines in lungs by suppressing pAkt and pP65 signaling. In a cross-sectional investigation, our study also described the elevated platelet-leukocyte aggregates and pro-inflammatory cytokines in circulation of T2D patients. T2D platelets and leukocytes showed an increased aggregation and thrombus formation in vitro. Interestingly, a pre-incubation of T2D blood samples with octyl αKG significantly suppressed the activation of these blood cells and ameliorated aggregate/thrombus formation in vitro. Thus, suggesting a potential therapeutic role of αKG against inflammation, thrombosis, and CVDs in T2D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Trombose , Humanos , Camundongos , Animais , Ácidos Cetoglutáricos/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ativação Plaquetária , Inflamação/metabolismo , Leucócitos/patologia , Plaquetas/patologia , Trombose/tratamento farmacológico , Trombose/etiologia , Doenças Cardiovasculares/patologia , Citocinas/metabolismo , Suplementos Nutricionais
10.
J Asian Nat Prod Res ; 25(5): 484-496, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35866240

RESUMO

Metabolic disorder is highly related to obesity, insulin resistance, hypertension, and hyperlipidemia. The present study found that astragaloside IV (ASI) attenuated metabolic disorder related symptoms and modulated hepatic lipid metabolism associated gene mRNA expression in db/db mice. ASI inhibited rosiglitazone-induced adipocyte differentiation of 3T3-L1 cells, and lipid accumulation in palmitic acid (PA)-induced HepG2 cells with down-regulated mRNA expression of lipogenesis-related genes. In addition, it was predicted to bind to the ligand binding domain (LBD) of PPARγ and inhibit its transactivity. Collectively, our study suggested that ASI improves lipid metabolism in obese mice probably through suppressing PPARγ activity.


Assuntos
Obesidade , PPAR gama , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , RNA Mensageiro , Células 3T3-L1 , Camundongos Endogâmicos C57BL
11.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835279

RESUMO

Previously, we reported that a crude polyphenol-enriched fraction of Cyclopia intermedia (CPEF), a plant consumed as the herbal tea, commonly known as honeybush, reduced lipid content in 3T3-L1 adipocytes and inhibited body weight gain in obese, diabetic female leptin receptor-deficient (db/db) mice. In the current study, the mechanisms underlying decreased body weight gain in db/db mice were further elucidated using western blot analysis and in silico approaches. CPEF induced uncoupling protein 1 (UCP1, 3.4-fold, p < 0.05) and peroxisome proliferator-activated receptor alpha (PPARα, 2.6-fold, p < 0.05) expression in brown adipose tissue. In the liver, CPEF induced PPARα expression (2.2-fold, p < 0.05), which was accompanied by a 31.9% decrease in fat droplets in Hematoxylin and Eosin (H&E)-stained liver sections (p < 0.001). Molecular docking analysis revealed that the CPEF compounds, hesperidin and neoponcirin, had the highest binding affinities for UCP1 and PPARα, respectively. This was validated with stabilising intermolecular interactions within the active sites of UCP1 and PPARα when complexed with these compounds. This study suggests that CPEF may exert its anti-obesity effects by promoting thermogenesis and fatty acid oxidation via inducing UCP1 and PPARα expression, and that hesperidin and neoponcirin may be responsible for these effects. Findings from this study could pave the way for designing target-specific anti-obesity therapeutics from C. intermedia.


Assuntos
Fabaceae , Obesidade , Animais , Camundongos , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Camundongos Obesos , Simulação de Acoplamento Molecular , Obesidade/terapia , PPAR alfa/metabolismo , Proteína Desacopladora 1/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901964

RESUMO

Butyrate produced by the gut microbiota has beneficial effects on metabolism and inflammation. Butyrate-producing bacteria are supported by diets with a high fiber content, such as high-amylose maize starch (HAMS). We investigated the effects of HAMS- and butyrylated HAMS (HAMSB)-supplemented diets on glucose metabolism and inflammation in diabetic db/db mice. Mice fed HAMSB had 8-fold higher fecal butyrate concentration compared to control diet-fed mice. Weekly analysis of fasting blood glucose showed a significant reduction in HAMSB-fed mice when the area under the curve for all five weeks was analyzed. Following treatment, fasting glucose and insulin analysis showed increased homeostatic model assessment (HOMA) insulin sensitivity in the HAMSB-fed mice. Glucose-stimulated insulin release from isolated islets did not differ between the groups, while insulin content was increased by 36% in islets of the HAMSB-fed mice. Expression of insulin 2 was also significantly increased in islets of the HAMSB-fed mice, while no difference in expression of insulin 1, pancreatic and duodenal homeobox 1, MAF bZIP transcription factor A and urocortin 3 between the groups was observed. Hepatic triglycerides in the livers of the HAMSB-fed mice were significantly reduced. Finally, mRNA markers of inflammation in liver and adipose tissue were reduced in mice fed HAMSB. These findings suggest that HAMSB-supplemented diet improves glucose metabolism in the db/db mice, and reduces inflammation in insulin-sensitive tissues.


Assuntos
Butiratos , Amido , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Amilose/metabolismo , Inflamação , Fígado/metabolismo , Camundongos Endogâmicos , Insulina , Homeostase , Glucose , Camundongos Endogâmicos C57BL , Glicemia/metabolismo
13.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677541

RESUMO

The stem of Tinospora cordifolia has been traditionally used in traditional Indian systems of medicine for blood sugar control, without the knowledge of the underlying mechanism and chemical constitution responsible for the observed anti-diabetic effect. In the present study, Tinosporaside, a diterpenoid isolated from the stem of T. cordifolia, was investigated for its effects on glucose utilization in skeletal muscle cells, which was followed by determining the anti-hyperglycemic efficacy in our diabetic db/db mice model. We found that tinosporaside augmented glucose uptake by increasing the translocation of GLUT4 to the plasma membrane in L6 myotubes, upon prolonged exposure for 16 h. Moreover, tinosporaside treatment significantly increased the phosphorylation of protein kinase B/AKT (Ser-473) and 5' AMP-activated protein kinase (AMPK, Thr-172). These effects were abolished in the presence of the wortmannin and compound C. Administration of tinosporaside to db/db mice improved glucose tolerance and peripheral insulin sensitivity associated with increased gene expression and phosphorylation of the markers of phosphoinositide 3-kinases (PI3Ks) and AMPK signaling in skeletal muscle tissue. The findings revealed that tinosporaside exerted its antidiabetic efficacy by enhancing the rate of glucose utilization in skeletal muscle, mediated by PI3K- and AMPK-dependent signaling mechanisms.


Assuntos
Fosfatidilinositol 3-Quinases , Tinospora , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fibras Musculares Esqueléticas , Fosforilação , Transportador de Glucose Tipo 4/metabolismo
14.
Diabetes Obes Metab ; 24(3): 391-401, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34704329

RESUMO

AIM: To investigate how subchronic administration of a glucokinase activator (GKA) results in attenuation of the hypoglycaemic effect in the diabetic condition. MATERIALS AND METHODS: Six-week-old db/db mice were fed standard chow containing a GKA or the sodium-glucose cotransporter 2 inhibitor ipragliflozin for 1, 6, 14 or 28 days. We performed histological evaluation and gene expression analysis of the pancreatic islets and liver after each treatment and compared the results to those in untreated mice. RESULTS: The unsustained hypoglycaemic effect of GKAs was reproduced in db/db mice in conjunction with significant hepatic fat accumulation. The initial reactions to treatment with the GKA in the liver were upregulation of the gene expression of carbohydrate response element-binding protein beta (Chrebp-b) and downregulation of phosphoenolpyruvate carboxykinase (Pepck) on day 1. Subsequently, the initial changes in Chrebp-b and Pepck disappeared and increases in the expression of genes involved in lipogenesis, including acetyl-CoA carboxylase and fatty acid synthase, were observed. There were no significant changes in the pancreatic ß cells nor in hepatic insulin signalling. CONCLUSIONS: The GKA showed an unsustained hypoglycaemic effect and promoted hepatic fat accumulation in db/db mice. Dynamic changes in the expression of hepatic genes involved in lipogenesis and gluconeogenesis could affect the unsustained hypoglycaemic effect of the GKA despite no changes in pancreatic ß-cell function and mass.


Assuntos
Glucoquinase , Hipoglicemiantes , Animais , Glucoquinase/genética , Glucoquinase/metabolismo , Gluconeogênese , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fígado/metabolismo , Camundongos , Triglicerídeos/metabolismo
15.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499639

RESUMO

Diabetic nephropathy (DN) exacerbates renal tissue damage and is a major cause of end-stage renal disease. Reactive oxygen species play a vital role in hyperglycemia-induced renal injury. This study examined whether the oral hypoglycemic drug acarbose (Ab) could attenuate the progression of DN in type 2 diabetes mellitus mice. In this study, 50 mg/kg body weight of Ab was administered to high-fat diet (HFD)-fed db/db mice. Their body weight was recorded every week, and the serum glucose concentration was monitored every 2 weeks. Following their euthanasia, the kidneys of mice were analyzed through hematoxylin and eosin, periodic acid Schiff, Masson's trichrome, and immunohistochemistry (IHC) staining. The results revealed that Ab stabilized the plasma glucose and indirectly improved the insulin sensitivity and renal functional biomarkers in diabetic mice. In addition, diabetes-induced glomerular hypertrophy, the saccharide accumulation, and formation of collagen fiber were reduced in diabetic mice receiving Ab. Although the dosages of Ab cannot decrease the blood sugar in db/db mice, our results indicate that Ab alleviates glucolipotoxicity-induced DN by inhibiting kidney fibrosis-related proteins through the Ras/ERK pathway.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Acarbose/farmacologia , Rim/metabolismo , Peso Corporal , Camundongos Endogâmicos C57BL
16.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362336

RESUMO

Diabetes mellitus (DM) is a common chronic metabolic disease, and the C57BLKsJ-db/db mice are good animal models for type 2 diabetes mellitus (T2DM). In this study, Western blotting and immunohistochemistry (IHC) were employed to examine the protein expression of adiponectin in the liver tissues of T2DM mice with different disease courses (4, 16, and 32 weeks). Adiponectin expression reduced in the liver tissues of T2DM mice in different disease courses. The genotypic and allelic frequencies of the adiponectin gene rs1063538 and rs2241766 single nucleotide polymorphisms (SNPs) in a Taiwanese population (570 T2DM patients and 1700 controls) were investigated. Based on the genetic distribution of the rs2241766 locus, the distribution frequency of the T allele in the T2DM group (72.8%) was higher than in the control group (68.8%). Individuals carrying the G allele had a 0.82-fold greater risk of developing T2DM than individuals carrying the T allele. Differences were evident in the genotypic and allelic distributions (p < 0.05). Enzyme-linked immunosorbent assay (ELISA) was used to measure changes in serum adiponectin protein concentrations in the healthy population and in patients with T2DM. Serum adiponectin concentration in patients with T2DM was lower than in the control group. In summary, adiponectin was determined to be a T2DM susceptibility gene and may be involved in T2DM progression.


Assuntos
Adiponectina , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Adiponectina/metabolismo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Estudos de Casos e Controles
17.
Microvasc Res ; 138: 104204, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119533

RESUMO

BACKGROUND: Diabetes aggravates myocardial ischemia/reperfusion (I/R) injury (MI/RI). The association between high mobility group box 1 protein (HMGB1) and autophagy in diabetic MI/RI remains unknown. Therefore, we investigated whether inhibiting HMGB1 can regulate autophagy in diabetic mice (DM) after I/R injury. METHODS: I/R models of C57BL/KsJ mice and db/db mice were established. Histological changes, infarct size (IS), HMGB1 protein, and autophagy-related proteins were detected after 24h of reperfusion. In DM treatment groups, anti-HMGB1 antibody (H-Ig) was injected via tail vein after reperfusion for 15min, and the above-mentioned experimental methods were performed at the end of reperfusion. RESULTS: Compared with the I/R group, the pathological myocardial damage and IS were significantly increased in the I/R (DM) group. Additionally, the levels of HMGB1, Beclin1, and LC3II/LC3I ratio were remarkably higher in the I/R (DM) group than those in the I/R group, while p62 level was lower. In the H-Ig (DM) group, injection of H-Ig significantly reduced the IS, as well as alleviated pathological myocardial damage. Moreover, Beclin1, LC3II/LC3I ratio, and p62 levels were notably reversed after this treatment. CONCLUSIONS: I/R-induced myocardium was aggravated by diabetes, which may be related to increased release of HMGB1 and activated autophagy. Inhibition of HMGB1 alleviates diabetic MIRI which was associated with reduced autophagy.


Assuntos
Anticorpos/farmacologia , Autofagia/efeitos dos fármacos , Diabetes Mellitus , Proteína HMGB1/antagonistas & inibidores , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais
18.
Exp Eye Res ; 212: 108801, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688624

RESUMO

Endostatin, a naturally cleaved fragment of type XVIII collagen with antiangiogenic activity, has been involved in the regulation of neovascularization during diabetic retinopathy. Here, the intracellular distribution of endostatin in healthy mouse and human neuroretinas has been analyzed. In addition, to study the effect of experimental hyperglycemia on retinal endostatin, the db/db mouse model has been used. Endostatin protein expression in mouse and human retinas was studied by immunofluorescence and Western blot, and compared with db/db mice. Eye fundus angiography, histology, and immunofluorescence were used to visualize mouse retinal and intravitreal vessels. For the first time, our results revealed the presence of endostatin in neurons of mouse and human retinas. Endostatin was mainly expressed in bipolar cells and photoreceptors, in contrast to the optic disc, where endostatin expression was undetectable. Diabetic mice showed a reduction of endostatin in their retinas associated with the appearance of intravitreal vessels at the optic disc in 50% of db/db mice. Intravitreal vessels showed GFAP positive neuroglia sheath, basement membrane thickening by collagen IV deposition, and presence of MMP-2 and MMP-9 in the vascular wall. All together, these results point that decreased retinal endostatin during experimental diabetes is associated with optic disc intravitreal vascularization. Based on their phenotype, these intravitreal vessels could be neovessels. However, it cannot be ruled out the possibility that they may also represent persistent hyaloid vessels.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética/metabolismo , Endostatinas/metabolismo , Disco Óptico/metabolismo , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Corpo Vítreo/irrigação sanguínea , Animais , Retinopatia Diabética/diagnóstico , Humanos , Masculino , Camundongos , Disco Óptico/patologia , Neovascularização Retiniana/patologia , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/diagnóstico por imagem , Corpo Vítreo/diagnóstico por imagem
19.
FASEB J ; 34(8): 10462-10475, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32539181

RESUMO

It has been reported that butyrate played an protect role in diabetic kidney disease (DKD) while the mechanism was still not clear. Transforming growth factor-ß1 (TGF-ß1) is the initial factor which triggers the profibrotic signaling cascades. P311 is an RNA-binding protein, which could stimulate TGF-ß1 translation in several cell types. In our study, we found that supplementary of butyrate alleviated fibrosis and suppressed the expression of TGF-ß1 and P311 in the kidney of db/db mice as well as high glucose (HG)-induced SV40-MES-13 cells. Overexpression of P311 offset the inhibition of butyrate on TGF-ß1 in SV40-MES-13 cells. To make clear the mechanism of butyrate in regulating P311, microRNAs (miRNAs) of the SV40-MES-13 cells were sequenced. We found that miR-7a-5p was significantly decreased in the HG-induced SV40-MES-13 cells and the kidney of db/db mice, while giving butyrate reversed this change. Besides, miR-7a-5p could specifically target the 3' UTR of P311's mRNA and suppressed the expression of P311 in the SV40-MES-13 cells. Giving miR-7a-5p inhibitor blocked the inhibition of butyrate on P311 and TGF-ß1. Introducing the miR-7a-5p agomir into db/db mice alleviated renal fibrosis and inhibit the expression of P311 and TGF-ß1. In conclusion, butyrate alleviated DKD by mediating the miR-7a-5p/P311/TGF-ß1 pathway.


Assuntos
Butiratos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Regiões 3' não Traduzidas/efeitos dos fármacos , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , RNA Mensageiro/metabolismo
20.
Acta Pharmacol Sin ; 42(2): 252-263, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32948825

RESUMO

Diabetic nephropathy (DN) is one of the most common causes of end-stage renal disease worldwide. ω3-Fatty acids (ω3FAs) were found to attenuate kidney inflammation, glomerulosclerosis, and albuminuria in experimental and clinical studies of DN. As G protein-coupled receptor 120 (GPR120) was firstly identified as the receptor of ω3FAs, we here investigated the function of GPR120 in DN. We first examined the renal biopsies of DN patients, and found that GPR120 expression was negatively correlated with the progression of DN. Immunofluorescence staining analysis revealed that GPR120 protein was mainly located in the podocytes of the glomerulus. A potent and selective GPR120 agonist TUG-891 (35 mg · kg-1 · d-1, ig) was administered to db/db mice for 4 weeks. We showed that TUG-891 administration significantly improved urinary albumin excretion, protected against podocyte injury, and reduced collagen deposition in the glomerulus. In db/db mice, TUG-891 administration significantly inhibited the mRNA and protein expression of fibronectin, collagen IV, α-SMA, TGF-ß1, and IL-6, and downregulated the phosphorylation of Smad3 and STAT3 to alleviate glomerulosclerosis. Similar results were observed in high-glucose-treated MPC5 podocytes in the presence of TUG-891 (10 µM). Furthermore, we showed that TUG-891 effectively upregulated GPR120 expression, and suppressed TAK1-binding protein-1 expression as well as the phosphorylation of TAK1, IKKß, NF-κB p65, JNK, and p38 MAPK in db/db mice and high-glucose-treated MPC5 podocytes. Knockdown of GPR120 in MPC5 podocytes caused the opposite effects of TUG-891. In summary, our results highlight that activation of GPR120 in podocytes ameliorates renal inflammation and fibrosis to protect against DN.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Inflamação/patologia , Podócitos/patologia , Receptores Acoplados a Proteínas G/genética , Animais , Compostos de Bifenilo/farmacologia , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/genética , Progressão da Doença , Fibrose , Técnicas de Silenciamento de Genes , Humanos , Inflamação/genética , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilpropionatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA