Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(8): 1467-1476, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35452615

RESUMO

Messenger RNA (mRNA) translation by the ribosome represents the final step of a complicated molecular dance from DNA to protein. Although classically considered a decipherer that translates a 64-word genetic code into a proteome of astonishing complexity, the ribosome can also shape the transcriptome by controlling mRNA stability. Recent work has discovered that the ribosome is an arbiter of the general mRNA degradation pathway, wherein the ribosome transit rate serves as a major determinant of transcript half-lives. Specifically, members of the degradation complex sense ribosome translocation rates as a function of ribosome elongation rates. Central to this notion is the concept of codon optimality: although all codons impact translation rates, some are deciphered quickly, whereas others cause ribosome hesitation as a consequence of relative cognate tRNA concentration. These transient pauses induce a unique ribosome conformational state that is probed by the deadenylase complex, thereby inducing an orchestrated set of events that enhance both poly(A) shortening and cap removal. Together, these data imply that the coding region of an mRNA not only encodes for protein content but also impacts protein levels through determining the transcript's fate.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , Códon/genética , Códon/metabolismo , Proteínas/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
2.
Trends Biochem Sci ; 49(6): 477-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677919

RESUMO

A recently characterized RNA modification is NAD+-modified RNAs (NAD-RNAs). Various enzymes decap NAD-RNAs, and Wang and Yu et al. now describe another, namely Toll/interleukin-1 receptor (TIR) domain-containing proteins of bacteria and Archaea. TIR decapping products are a specific variant of cyclic ADP ribose (ADPR)-RNAs (v-cADPR-RNAs), opening a new window to the NAD-RNA world.


Assuntos
NAD , NAD/metabolismo , Humanos , Domínios Proteicos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/química , RNA/metabolismo , RNA/química
3.
Mol Cell ; 77(4): 775-785.e8, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902668

RESUMO

MicroRNAs (miRNAs) specify the recruitment of deadenylases to mRNA targets. Despite this recruitment, we find that miRNAs have almost no effect on steady-state poly(A)-tail lengths of their targets in mouse fibroblasts, which motivates the acquisition of pre-steady-state measurements of the effects of miRNAs on tail lengths, mRNA levels, and translational efficiencies. Effects on translational efficiency are minimal compared to effects on mRNA levels, even for newly transcribed target mRNAs. Effects on target mRNA levels accumulate as the mRNA population approaches steady state, whereas effects on tail lengths peak for recently transcribed target mRNAs and then subside. Computational modeling of this phenomenon reveals that miRNAs cause not only accelerated deadenylation of their targets but also accelerated decay of short-tailed target molecules. This unanticipated effect of miRNAs largely prevents short-tailed target mRNAs from accumulating despite accelerated target deadenylation. The net result is a nearly imperceptible change to the steady-state tail-length distribution of targeted mRNAs.


Assuntos
MicroRNAs/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Células 3T3 , Animais , Camundongos , Biossíntese de Proteínas , RNA Mensageiro/química
4.
Mol Cell ; 77(4): 786-799.e10, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902669

RESUMO

For all but a few mRNAs, the dynamics of metabolism are unknown. Here, we developed an experimental and analytical framework for examining these dynamics for mRNAs from thousands of genes. mRNAs of mouse fibroblasts exit the nucleus with diverse intragenic and intergenic poly(A)-tail lengths. Once in the cytoplasm, they have a broad (1000-fold) range of deadenylation rate constants, which correspond to cytoplasmic lifetimes. Indeed, with few exceptions, degradation appears to occur primarily through deadenylation-linked mechanisms, with little contribution from either endonucleolytic cleavage or deadenylation-independent decapping. Most mRNA molecules degrade only after their tail lengths fall below 25 nt. Decay rate constants of short-tailed mRNAs vary broadly (1000-fold) and are larger for short-tailed mRNAs that have previously undergone more rapid deadenylation. This coupling helps clear rapidly deadenylated mRNAs, enabling the large range in deadenylation rate constants to impart a similarly large range in stabilities.


Assuntos
Citoplasma/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Células 3T3 , Animais , Citoplasma/genética , Camundongos , Isoformas de RNA/metabolismo , RNA Mensageiro/química
5.
Genes Dev ; 34(11-12): 847-860, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354837

RESUMO

Human 4E-T is an eIF4E-binding protein (4E-BP) present in processing (P)-bodies that represses translation and regulates decay of mRNAs destabilized by AU-rich elements and microRNAs (miRNAs). However, the underlying regulatory mechanisms are still unclear. Here, we show that upon mRNA binding 4E-T represses translation and promotes deadenylation via the recruitment of the CCR4-NOT deadenylase complex. The interaction with CCR4-NOT is mediated by previously uncharacterized sites in the middle region of 4E-T. Importantly, mRNA decapping and decay are inhibited by 4E-T and the deadenylated target is stored in a repressed form. Inhibition of mRNA decapping requires the interaction of 4E-T with the cap-binding proteins eIF4E/4EHP. We further show that regulation of decapping by 4E-T participates in mRNA repression by the miRNA effector protein TNRC6B and that 4E-T overexpression interferes with tristetraprolin (TTP)- and NOT1-mediated mRNA decay. Thus, we postulate that 4E-T modulates 5'-to-3' decay by swapping the fate of a deadenylated mRNA from complete degradation to storage. Our results provide insight into the mechanism of mRNA storage that controls localized translation and mRNA stability in P-bodies.


Assuntos
Inativação Gênica/fisiologia , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
6.
Trends Biochem Sci ; 48(2): 142-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36068130

RESUMO

RNA modifications immensely expand the diversity of the transcriptome, thereby influencing the function, localization, and stability of RNA. One prominent example of an RNA modification is the eukaryotic cap located at the 5' terminus of mRNAs. Interestingly, the redox cofactor NAD can be incorporated into RNA by RNA polymerase in vitro. The existence of NAD-modified RNAs in vivo was confirmed using liquid chromatography and mass spectrometry (LC-MS). In the past few years novel technologies and methods have characterized NAD as a cap-like RNA structure and enabled the investigation of NAD-capped RNAs (NAD-RNAs) in a physiological context. We highlight the identification of NAD-RNAs as well as the regulation and functions of this epitranscriptomic mark in all domains of life.


Assuntos
NAD , Capuzes de RNA , NAD/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Oxirredução , Estabilidade de RNA
7.
EMBO J ; 42(21): e113933, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37621215

RESUMO

Deadenylation-dependent mRNA decapping and decay is the major cytoplasmic mRNA turnover pathway in eukaryotes. Many mRNA decapping and decay factors are associated with each other via protein-protein interaction motifs. For example, the decapping enzyme DCP2 and the 5'-3' exonuclease XRN1 interact with the enhancer of mRNA-decapping protein 4 (EDC4), a large scaffold that has been reported to stimulate mRNA decapping. mRNA decapping and decay factors are also found in processing bodies (P-bodies), evolutionarily conserved ribonucleoprotein granules that are often enriched with mRNAs targeted for decay, yet paradoxically are not required for mRNA decay to occur. Here, we show that disrupting the EDC4-XRN1 interaction or altering their stoichiometry inhibits mRNA decapping, with microRNA-targeted mRNAs being stabilized in a translationally repressed state. Importantly, we demonstrate that this concomitantly leads to larger P-bodies that are responsible for preventing mRNA decapping. Finally, we demonstrate that P-bodies support cell viability and prevent stress granule formation when XRN1 is limiting. Taken together, these data demonstrate that the interaction between XRN1 and EDC4 regulates P-body dynamics to properly coordinate mRNA decapping with 5'-3' decay in human cells.


Assuntos
Endorribonucleases , Corpos de Processamento , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Estabilidade de RNA/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
8.
EMBO J ; 41(6): e108650, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156721

RESUMO

Gene expression is tightly regulated at the levels of both mRNA translation and stability. The poly(A)-binding protein (PABP) is thought to play a role in regulating these processes by binding the mRNA 3' poly(A) tail and interacting with both the translation and mRNA deadenylation machineries. In this study, we directly investigate the impact of PABP on translation and stability of endogenous mRNAs in human cells. Remarkably, our transcriptome-wide analysis only detects marginal mRNA translation changes in PABP-depleted cells. In contrast, rapidly depleting PABP alters mRNA abundance and stability, albeit non-uniformly. Otherwise stable transcripts, including those encoding proteins with constitutive functions, are destabilized in PABP-depleted cells. In contrast, many unstable mRNAs, including those encoding proteins with regulatory functions, decay at similar rates in presence or absence of PABP. Moreover, PABP depletion-induced cell death can partially be suppressed by disrupting the mRNA decapping and 5'-3' decay machinery. Finally, we provide evidence that the LSM1-7 complex promotes decay of "stable" mRNAs in PABP-depleted cells. Taken together, these findings suggest that PABP plays an important role in preventing the untimely decay of select mRNA populations.


Assuntos
Perfilação da Expressão Gênica , Morte Celular , Humanos , RNA Mensageiro/genética
9.
Mol Cell ; 72(1): 10-17, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290147

RESUMO

Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.


Assuntos
Estabilidade de RNA/genética , RNA Mensageiro/biossíntese , Transcrição Gênica , Núcleo Celular/genética , Citoplasma/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 299(12): 105415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918803

RESUMO

Chikungunya virus (CHIKV) nonstructural protein 1 (nsP1) contains both the N7-guanine methyltransferase and guanylyltransferase activities and catalyzes the 5' end cap formation of viral RNAs. To further understand its catalytic activity and role in virus-host interaction, we demonstrate that purified recombinant CHIKV nsP1 can reverse the guanylyl transfer reaction and remove the m7GMP from a variety of capped RNA substrates including host mRNAs. We then provide the structural basis of this function with a high-resolution cryo-EM structure of nsP1 in complex with the unconventional cap-1 substrate RNA m7GpppAmU. We show that the 5'ppRNA species generated by decapping can trigger retinoic acid-inducible gene I-mediated interferon response. We further demonstrate that the decapping activity is conserved among the alphaviral nsP1s. To our knowledge, this is a new mechanism through which alphaviruses activate the antiviral immune response. This decapping activity could promote cellular mRNA degradation and facilitate viral gene expression, which is functionally analogous to the cap-snatching mechanism by influenza virus.


Assuntos
Vírus Chikungunya , Endorribonucleases , Capuzes de RNA , Proteínas não Estruturais Virais , Humanos , Vírus Chikungunya/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Endorribonucleases/metabolismo
11.
J Biol Chem ; 299(3): 102990, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758802

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Humanos , SARS-CoV-2 , Histona Desacetilases/genética , Interferon Tipo I/farmacologia , Peptídeo Hidrolases , Mamíferos , Endorribonucleases , Transativadores
12.
Mol Microbiol ; 119(5): 630-639, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024243

RESUMO

There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.


Assuntos
Aspergillus nidulans , Proteínas de Saccharomyces cerevisiae , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos/genética , Ribossomos/metabolismo , Endorribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Virol ; 97(3): e0175822, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916936

RESUMO

Recent studies have begun to reveal the complex and multifunctional roles of N6-methyladenosine (m6A) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated. YTHDF proteins also decreased at late stages of infection by herpes simplex virus 1 (HSV-1) but not human cytomegalovirus, suggesting that YTHDF2 is downregulated in response to infections that induce host shutoff. In line with this idea, YTHDF2 was potently downregulated upon infection with a VacV mutant expressing catalytically inactive forms of the decapping enzymes, D9 and D10, which fails to degrade dsRNA and induces a protein kinase R response that itself inhibits protein synthesis. Overexpression and RNAi-mediated depletion approaches further demonstrate that YTHDF2 does not directly affect VacV replication. Instead, experimental downregulation of YTHDF2 or the related family member, YTHDF1, induces a potent increase in interferon-stimulated gene expression and establishes an antiviral state that suppresses infection by either VacV or HSV-1. Combined, our data suggest that YTHDF2 is destabilized in response to infection-induced host shutoff and serves to augment host antiviral responses. IMPORTANCE There is increasing recognition of the importance of N6-methyladenosine (m6A) modifications to both viral and host mRNAs and the complex roles this modification plays in determining the fate of infection by diverse RNA and DNA viruses. However, in many instances, the functional contributions and importance of specific m6A writer, reader, and eraser proteins remains unknown. Here, we show that natural target cells but not transformed cell lines downregulate the YTH Domain Family (YTHDF) of m6A reader proteins, in particular YTHDF2, in response to shutoff of protein synthesis upon infection with the large DNA viruses, vaccinia virus (VacV), or herpes simplex virus type 1. We further reveal that YTHDF2 downregulation also occurs as part of the host protein kinase R response to a VacV shutoff mutant and that this downregulation of YTHDF family members functions to enhance interferon-stimulated gene expression to create an antiviral state.


Assuntos
Poxviridae , Proteínas de Ligação a RNA , Vaccinia virus , Vacínia , Humanos , Expressão Gênica , Interferons/metabolismo , Poxviridae/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Vacínia/virologia , Vaccinia virus/metabolismo , Replicação Viral , Infecções por Poxviridae/virologia , Interações Hospedeiro-Patógeno
14.
J Biol Chem ; 298(8): 102171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750211

RESUMO

The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.


Assuntos
Capuzes de RNA , Estabilidade de RNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Biossíntese de Proteínas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Biomol NMR ; 77(1-2): 55-67, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36639431

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.


Assuntos
Prótons , Triptofano , Flúor , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Triptofano/química , Radioisótopos de Flúor/química
16.
Biol Chem ; 404(11-12): 1101-1121, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37709756

RESUMO

The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.


Assuntos
Biologia , Estabilidade de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo
17.
J Virol ; 96(10): e0190521, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35481780

RESUMO

Removal of 5' cap on cellular mRNAs by the African swine fever virus (ASFV) decapping enzyme g5R protein (g5Rp) is beneficial to viral gene expression during the early stages of infection. As the only nucleoside diphosphate-linked moiety X (Nudix) decapping enzyme encoded in the ASFV genome, g5Rp works in both the degradation of cellular mRNA and the hydrolyzation of the diphosphoinositol polyphosphates. Here, we report the structures of dimeric g5Rp and its complex with inositol hexakisphosphate (InsP6). The two g5Rp protomers interact head to head to form a dimer, and the dimeric interface is formed by extensive polar and nonpolar interactions. Each protomer is composed of a unique N-terminal helical domain and a C-terminal classic Nudix domain. As g5Rp is an mRNA-decapping enzyme, we identified key residues, including K8, K94, K95, K98, K175, R221, and K243 located on the substrate RNA binding interfaces of g5Rp which are important to RNA binding and decapping enzyme activity. Furthermore, the g5Rp-mediated mRNA decapping was inhibited by InsP6. The g5Rp-InsP6 complex structure showed that the InsP6 molecules occupy the same regions that primarily mediate g5Rp-RNA interaction, elucidating the roles of InsP6 in the regulation of the viral decapping activity of g5Rp in mRNA degradation. Collectively, these results provide the structural basis of interaction between RNA and g5Rp and highlight the inhibitory mechanism of InsP6 on mRNA decapping by g5Rp. IMPORTANCE ASF is a highly contagious hemorrhagic viral disease in domestic pigs which causes high mortality. Currently, there are still no effective vaccines or specific drugs available against this particular virus. The protein g5Rp is the only viral mRNA-decapping enzyme, playing an essential role in the machinery assembly of mRNA regulation and translation initiation. In this study, we solved the crystal structures of g5Rp dimer and complex with InsP6. Structure-based mutagenesis studies revealed critical residues involved in a candidate RNA binding region, which also play pivotal roles in complex with InsP6. Notably, InsP6 can inhibit g5Rp activity by competitively blocking the binding of substrate mRNA to the enzyme. Our structure-function studies provide the basis for potential anti-ASFV inhibitor designs targeting the critical enzyme.


Assuntos
Vírus da Febre Suína Africana , Endorribonucleases , Ácido Fítico , Febre Suína Africana , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/enzimologia , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ácido Fítico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
18.
New Phytol ; 239(1): 222-239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631975

RESUMO

To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.


Assuntos
Basidiomycota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Basidiomycota/genética , Fungos/genética , Pirofosfatases/metabolismo , Virulência/genética , Doenças das Plantas/microbiologia , Nudix Hidrolases
19.
Cereb Cortex ; 32(7): 1494-1507, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34467373

RESUMO

Homozygous mutations in the gene encoding the scavenger mRNA-decapping enzyme, DcpS, have been shown to underlie developmental delay and intellectual disability. Intellectual disability is associated with both abnormal neocortical development and mRNA metabolism. However, the role of DcpS and its scavenger decapping activity in neuronal development is unknown. Here, we show that human neurons derived from patients with a DcpS mutation have compromised differentiation and neurite outgrowth. Moreover, in the developing mouse neocortex, DcpS is required for the radial migration, polarity, neurite outgrowth, and identity of developing glutamatergic neurons. Collectively, these findings demonstrate that the scavenger mRNA decapping activity contributes to multiple pivotal roles in neural development and further corroborate that mRNA metabolism and neocortical pathologies are associated with intellectual disability.


Assuntos
Endorribonucleases , Neurogênese , Animais , Humanos , Camundongos , Crescimento Neuronal , RNA Mensageiro
20.
Proc Natl Acad Sci U S A ; 117(32): 19237-19244, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723815

RESUMO

The 5' messenger RNA (mRNA) cap structure enhances translation and protects the transcript against exonucleolytic degradation. During mRNA turnover, this cap is removed from the mRNA. This decapping step is catalyzed by the Scavenger Decapping Enzyme (DcpS), in case the mRNA has been exonucleolyticly shortened from the 3' end by the exosome complex. Here, we show that DcpS only processes mRNA fragments that are shorter than three nucleotides in length. Based on a combination of methyl transverse relaxation optimized (TROSY) NMR spectroscopy and X-ray crystallography, we established that the DcpS substrate length-sensing mechanism is based on steric clashes between the enzyme and the third nucleotide of a capped mRNA. For longer mRNA substrates, these clashes prevent conformational changes in DcpS that are required for the formation of a catalytically competent active site. Point mutations that enlarge the space for the third nucleotide in the mRNA body enhance the activity of DcpS on longer mRNA species. We find that this mechanism to ensure that the enzyme is not active on translating long mRNAs is conserved from yeast to humans. Finally, we show that the products that the exosome releases after 3' to 5' degradation of the mRNA body are indeed short enough to be decapped by DcpS. Our data thus directly confirms the notion that mRNA products of the exosome are direct substrates for DcpS. In summary, we demonstrate a direct relationship between conformational changes and enzyme activity that is exploited to achieve substrate selectivity.


Assuntos
Endorribonucleases/metabolismo , RNA Mensageiro/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Endorribonucleases/química , Endorribonucleases/genética , Humanos , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA