Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788716

RESUMO

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Assuntos
Proliferação de Células , Hidroximetilglutaril-CoA Sintase , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ácido Mevalônico/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Transdução de Sinais , Degrons , Proteínas Adaptadoras de Transdução de Sinal
2.
Mol Cell Proteomics ; 23(2): 100714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199506

RESUMO

Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.


Assuntos
Proteômica , Baço , Animais , Camundongos , Proteômica/métodos , Baço/química , Baço/metabolismo , Cisteína Endopeptidases/metabolismo , Proteoma/análise
3.
Mol Cell Proteomics ; 23(6): 100781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703894

RESUMO

Positional proteomics methodologies have transformed protease research, and have brought mass spectrometry (MS)-based degradomics studies to the forefront of protease characterization and system-wide interrogation of protease signaling. Considerable advancements in both sensitivity and throughput of liquid chromatography (LC)-MS/MS instrumentation enable the generation of enormous positional proteomics datasets of natural and protein termini and neo-termini of cleaved protease substrates. However, concomitant progress has not been observed to the same extent in data analysis and post-processing steps, arguably constituting the largest bottleneck in positional proteomics workflows. Here, we present a computational tool, CLIPPER 2.0, that builds on prior algorithms developed for MS-based protein termini analysis, facilitating peptide-level annotation and data analysis. CLIPPER 2.0 can be used with several sample preparation workflows and proteomics search algorithms and enables fast and automated database information retrieval, statistical and network analysis, as well as visualization of terminomic datasets. We demonstrate the applicability of our tool by analyzing GluC and MMP9 cleavages in HeLa lysates. CLIPPER 2.0 is available at https://github.com/UadKLab/CLIPPER-2.0.


Assuntos
Peptídeos , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Humanos , Peptídeos/metabolismo , Peptídeos/análise , Células HeLa , Espectrometria de Massas em Tandem/métodos , Algoritmos , Software , Bases de Dados de Proteínas , Cromatografia Líquida , Anotação de Sequência Molecular , Análise de Dados , Metaloproteinase 9 da Matriz/metabolismo
4.
J Biol Chem ; 300(6): 107347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718867

RESUMO

A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.


Assuntos
Metástase Neoplásica , Neoplasias , Peptídeo Hidrolases , Proteólise , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Progressão da Doença
5.
J Virol ; 98(7): e0049824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953667

RESUMO

Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE: RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Proteólise , Enterovirus Humano B/metabolismo , Humanos , Camundongos , Animais , Células HeLa , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/metabolismo , Proteínas Virais/metabolismo , Proteômica/métodos , Interações Hospedeiro-Patógeno , Proteases Virais 3C/metabolismo , Linhagem Celular , Proteases Virais/metabolismo , Poliproteínas/metabolismo
6.
Mol Cell Proteomics ; 22(7): 100584, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236440

RESUMO

The N termini of proteins contain information about their biochemical properties and functions. These N termini can be processed by proteases and can undergo other co- or posttranslational modifications. We have developed LATE (LysN Amino Terminal Enrichment), a method that uses selective chemical derivatization of α-amines to isolate the N-terminal peptides, in order to improve N-terminome identification in conjunction with other enrichment strategies. We applied LATE alongside another N-terminomic method to study caspase-3-mediated proteolysis both in vitro and during apoptosis in cells. This has enabled us to identify many unreported caspase-3 cleavages, some of which cannot be identified by other methods. Moreover, we have found direct evidence that neo-N-termini generated by caspase-3 cleavage can be further modified by Nt-acetylation. Some of these neo-Nt-acetylation events occur in the early phase of the apoptotic process and may have a role in translation inhibition. This has provided a comprehensive overview of the caspase-3 degradome and has uncovered previously unrecognized cross talk between posttranslational Nt-acetylation and caspase proteolytic pathways.


Assuntos
Caspase 3 , Processamento de Proteína Pós-Traducional , Acetilação , Apoptose , Caspase 3/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise
7.
Mol Cell Proteomics ; 22(6): 100566, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169079

RESUMO

The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.


Assuntos
Hemopexina , Metaloproteinase 14 da Matriz , Membrana Celular/metabolismo , Hemopexina/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Peptídeos/metabolismo , Proteólise , Humanos
8.
J Proteome Res ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647137

RESUMO

Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.

9.
J Proteome Res ; 23(2): 844-856, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38264990

RESUMO

Myocardial ischemia-reperfusion (IR) (stunning) injury triggers changes in the proteome and degradome of the heart. Here, we utilize quantitative proteomics and comprehensive degradomics to investigate the molecular mechanisms of IR injury in isolated rat hearts. The control group underwent aerobic perfusion, while the IR injury group underwent 20 min of ischemia and 30 min of reperfusion to induce a stunning injury. As MMP-2 activation has been shown to contribute to myocardial injury, hearts also underwent IR injury with ARP-100, an MMP-2-preferring inhibitor, to dissect the contribution of MMP-2 to IR injury. Using data-independent acquisition (DIA) and mass spectroscopy, we quantified 4468 proteins in ventricular extracts, whereby 447 proteins showed significant alterations among the three groups. We then used subtiligase-mediated N-terminomic labeling to identify more than a hundred specific cleavage sites. Among these protease substrates, 15 were identified following IR injury. We identified alterations in numerous proteins involved in mitochondrial function and metabolism following IR injury. Our findings provide valuable insights into the biochemical mechanisms of myocardial IR injury, suggesting alterations in reactive oxygen/nitrogen species handling and generation, fatty acid metabolism, mitochondrial function and metabolism, and cardiomyocyte contraction.


Assuntos
Metaloproteinase 2 da Matriz , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Proteômica , Traumatismo por Reperfusão Miocárdica/metabolismo , Mitocôndrias/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Isquemia/metabolismo , Miocárdio/metabolismo
10.
Mol Cell Proteomics ; 21(4): 100223, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283288

RESUMO

Loss-of-function mutations in the secreted enzyme ADAMTS7 (a disintegrin and metalloproteinase with thrombospondin motifs 7) are associated with protection for coronary artery disease. ADAMTS7 catalytic inhibition has been proposed as a therapeutic strategy for treating coronary artery disease; however, the lack of an endogenous substrate has hindered the development of activity-based biomarkers. To identify ADAMTS7 extracellular substrates and their cleavage sites relevant to vascular disease, we used TAILS (terminal amine isotopic labeling of substrates), a method for identifying protease-generated neo-N termini. We compared the secreted proteome of vascular smooth muscle and endothelial cells expressing either full-length mouse ADAMTS7 WT, catalytic mutant ADAMTS7 E373Q, or a control luciferase adenovirus. Significantly enriched N-terminal cleavage sites in ADAMTS7 WT samples were compared to the negative control conditions and filtered for stringency, resulting in catalogs of high confidence candidate ADAMTS7 cleavage sites from our three independent TAILS experiments. Within the overlap of these discovery sets, we identified 24 unique cleavage sites from 16 protein substrates, including cleavage sites in EFEMP1 (EGF-containing fibulin-like extracellular matrix protein 1/Fibulin-3). The ADAMTS7 TAILS preference for EFEMP1 cleavage at the amino acids 123.124 over the adjacent 124.125 site was validated using both endogenous EFEMP1 and purified EFEMP1 in a binary in vitro cleavage assay. Collectively, our TAILS discovery experiments have uncovered hundreds of potential substrates and cleavage sites to explore disease-related biological substrates and facilitate activity-based ADAMTS7 biomarker development.


Assuntos
Doença da Artéria Coronariana , Peptídeo Hidrolases , Proteína ADAMTS7 , Animais , Biomarcadores , Endopeptidases , Células Endoteliais/metabolismo , Camundongos , Peptídeo Hidrolases/metabolismo , Proteoma/química , Cauda/metabolismo
11.
Proteomics ; 23(15): e2300040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226369

RESUMO

Synovial fluid (SF) may contain cleavage products of proteolytic activities. Our aim was to characterize the degradome through analysis of proteolytic activity and differential abundance of these components in a peptidomic analysis of SF in knee osteoarthritis (OA) patients versus controls (n = 23). SF samples from end-stage knee osteoarthritis patients undergoing total knee replacement surgery and controls, that is, deceased donors without known knee disease were previously run using liquid chromatography mass spectrometry (LC-MS). This data was used to perform new database searches generating results for non-tryptic and semi-tryptic peptides for studies of degradomics in OA. We used linear mixed models to estimate differences in peptide-level expression between the two groups. Known proteolytic events (from the MEROPS peptidase database) were mapped to the dataset, allowing the identification of potential proteases and which substrates they cleave. We also developed a peptide-centric R tool, proteasy, which facilitates analyses that involve retrieval and mapping of proteolytic events. We identified 429 differentially abundant peptides. We found that the increased abundance of cleaved APOA1 peptides is likely a consequence of enzymatic degradation by metalloproteinases and chymase. We identified metalloproteinase, chymase, and cathepsins as the main proteolytic actors. The analysis indicated increased activity of these proteases irrespective of their abundance.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/metabolismo , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Quimases/análise , Quimases/metabolismo , Peptídeo Hidrolases/análise , Peptídeos/análise
12.
Chembiochem ; 24(16): e202300108, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37166757

RESUMO

Controlled protein degradation by the ubiquitin-proteasome pathway is critical for almost all cellular processes. E3 ubiquitin ligases are responsible for targeting proteins for ubiquitylation and subsequent proteasomal degradation with spatial and temporal precision. While studies have revealed various E3-substrate pairs involved in distinct biological processes, the complete substrate profiles of individual E3 ligases are largely unknown. Here we report a new approach to identify substrates of an E3 ligase for proteasomal degradation using unnatural amino acid incorporation pulse-chase proteomics (degradomics). Applying this approach, we determine the steady-state substrates of the C-terminal to LisH (CTLH) E3 ligase, a multi-component complex with poorly defined substrates. By comparing the proteome degradation profiles of active and inactive CTLH-expressing cells, we successfully identify previously known and new potential substrates of CTLH ligase. Altogether, degradomics can comprehensively identify degradation substrates of an E3 ligase, which can be adapted for other E3 ligases in various cellular contexts.


Assuntos
Proteômica , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteólise , Ubiquitinas/metabolismo
13.
Expert Rev Proteomics ; 20(12): 309-318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869791

RESUMO

INTRODUCTION: Positional proteomics provides proteome-wide information on protein termini and their modifications, uniquely enabling unambiguous identification of site-specific, limited proteolysis. Such proteolytic cleavage irreversibly modifies protein sequences resulting in new proteoforms with distinct protease-generated neo-N and C-termini and altered localization and activity. Misregulated proteolysis is implicated in a wide variety of human diseases. Protein termini, therefore, constitute a huge, largely unexplored source of specific analytes that provides a deep view into the functional proteome and a treasure trove for biomarkers. AREAS COVERED: We briefly review principal approaches to define protein termini and discuss recent advances in method development. We further highlight the potential of positional proteomics to identify and trace specific proteoforms, with a focus on proteolytic processes altered in disease. Lastly, we discuss current challenges and potential for applying positional proteomics in biomarker and pre-clinical research. EXPERT OPINION: Recent developments in positional proteomics have provided significant advances in sensitivity and throughput. In-depth analysis of proteolytic processes in clinical cohorts thus appears feasible in the near future. We argue that this will provide insights into the functional state of the proteome and offer new opportunities to utilize proteolytic processes altered or targeted in disease as specific diagnostic, prognostic and companion biomarkers.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Proteólise , Peptídeo Hidrolases/metabolismo , Biomarcadores/metabolismo
14.
Am J Physiol Cell Physiol ; 323(3): C651-C665, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35785985

RESUMO

Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.


Assuntos
Matriz Extracelular , Versicanas , Agrecanas/metabolismo , Matriz Extracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Versicanas/metabolismo
15.
Curr Issues Mol Biol ; 44(2): 559-577, 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35723325

RESUMO

Ischemia-reperfusion injury (IRI) is a hallmark for tissue injury in donation after circulatory death (DCD) kidneys. The implementation of hypothermic machine perfusion (HMP) provides a platform for improved preservation of DCD kidneys. Doxycycline administration has shown protective effects during IRI. Therefore, we explored the impact of doxycycline on proteolytic degradation mechanisms and the urinary proteome of perfused kidney grafts. Porcine kidneys underwent 30 min of warm ischemia, 24 h of oxygenated HMP (control/doxycycline) and 240 min of ex vivo reperfusion. A proteomic analysis revealed distinctive clustering profiles between urine samples collected at T15 min and T240 min. High-efficiency undecanal-based N-termini (HUNTER) kidney tissue degradomics revealed significantly more proteolytic activity in the control group at T-10. At T240, significantly more proteolytic activity was observed in the doxycycline group, indicating that doxycycline alters protein degradation during HMP. In conclusion, doxycycline administration during HMP led to significant proteomic and proteolytic differences and protective effects by attenuating urinary NGAL levels. Ultimately, we unraveled metabolic, and complement and coagulation pathways that undergo alterations during machine perfusion and that could be targeted to attenuate IRI induced injury.

16.
Osteoarthritis Cartilage ; 30(8): 1091-1102, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35339693

RESUMO

OBJECTIVES: Proteolytic destruction of articular cartilage, a major pathogenic mechanism in osteoarthritis (OA), was not previously investigated by terminomics strategies. We defined the degradome of human knee OA cartilage and the contribution therein of the protease HtrA1 using Terminal Amine Isotopic Labeling of Substrates (TAILS). DESIGN: Proteins from OA cartilage taken at knee arthroplasty (n = 6) or separately, from healthy cartilage incubated in triplicate with/without active HtrA1, were labeled at natural and proteolytically cleaved N-termini by reductive dimethylation, followed by trypsin digestion, enrichment of N-terminally labeled/blocked peptides, tandem mass spectrometry and positional peptide annotation to identify cleavage sites. Biglycan proteolysis by HtrA1 was validated biochemically and Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) was used to define the HtrA1 cleavage sites. RESULTS: We identified 10,155 unique internal peptides from 2,162 proteins, suggesting at least 10,797 cleavage sites in OA cartilage. 7,635 internal peptides originated in 371 extracellular matrix/secreted components, many undergoing extensive proteolysis. Rampant ragging of protein termini suggested pervasive exopeptidase activity. HtrA1, the most abundant protease in OA cartilage, experimentally generated 323 cleavages in 109 cartilage proteins, accounting for 171 observed cleavages in the OA degradome. ATOMS identified HtrA1 cleavage sites in a selected substrate, biglycan, whose direct cleavage by HtrA1 was thus orthogonally validated. CONCLUSIONS: OA cartilage demonstrates widespread proteolysis by endo- and exopeptidases. HtrA1 contributes broadly to cartilage proteolysis. Forward degradomics of OA cartilage together with reverse degradomics of proteases active in OA, e.g., HtrA1, can potentially fully annotate OA proteolytic pathways and provide new biomarkers.


Assuntos
Cartilagem Articular , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Peptídeo Hidrolases , Biglicano/metabolismo , Cartilagem Articular/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Proteólise , Espectrometria de Massas em Tandem
17.
Mol Cell Proteomics ; 19(8): 1330-1345, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32467259

RESUMO

The mammalian mitochondrial proteome consists of more than 1100 annotated proteins and their proteostasis is regulated by only a few ATP-dependent protease complexes. Technical advances in protein mass spectrometry allowed for detailed description of the mitoproteome from different species and tissues and their changes under specific conditions. However, protease-substrate relations within mitochondria are still poorly understood. Here, we combined Terminal Amine Isotope Labeling of Substrates (TAILS) N termini profiling of heart mitochondria proteomes isolated from wild type and Clpp-/- mice with a classical substrate-trapping screen using FLAG-tagged proteolytically active and inactive CLPP variants to identify new ClpXP substrates in mammalian mitochondria. Using TAILS, we identified N termini of more than 200 mitochondrial proteins. Expected N termini confirmed sequence determinants for mitochondrial targeting signal (MTS) cleavage and subsequent N-terminal processing after import, but the majority were protease-generated neo-N termini mapping to positions within the proteins. Quantitative comparison revealed widespread changes in protein processing patterns, including both strong increases or decreases in the abundance of specific neo-N termini, as well as an overall increase in the abundance of protease-generated neo-N termini in CLPP-deficient mitochondria that indicated altered mitochondrial proteostasis. Based on the combination of altered processing patterns, protein accumulation and stabilization in CLPP-deficient mice and interaction with CLPP, we identified OAT, HSPA9 and POLDIP2 and as novel bona fide ClpXP substrates. Finally, we propose that ClpXP participates in the cooperative degradation of UQCRC1. Together, our data provide the first landscape of the heart mitochondria N terminome and give further insights into regulatory and assisted proteolysis mediated by ClpXP.


Assuntos
Endopeptidase Clp/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteólise , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Endopeptidase Clp/deficiência , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes , Especificidade por Substrato
18.
Dev Dyn ; 250(1): 8-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875613

RESUMO

Secreted ADAMTS metalloproteases are involved in the sculpting, remodeling, and erosion of connective tissues throughout the body, including in the musculoskeletal system. ADAMTS proteases contribute to musculoskeletal development, pathological tissue destruction, and are mutated in congenital musculoskeletal disorders. Examples include versican cleavage by ADAMTS9 which is required for interdigital web regression during limb development, ADAMTS5-mediated aggrecan degradation in osteoarthritis resulting in joint erosion, and mutations in ADAMTS10 or ADAMTS17 that cause Weill-Marchesani syndrome, a short stature syndrome with bone, joint, muscle, cardiac, and eye involvement. Since the function of ADAMTS proteases and proteases in general is primarily defined by the molecular consequences of proteolysis of their respective substrates, it is paramount to identify all physiological substrates for each individual ADAMTS protease. Here, we review the current knowledge of ADAMTS proteases and their involvement in musculoskeletal development and disease, focusing on some of their known physiological substrates and the consequences of substrate cleavage. We further emphasize the critical need for the identification and validation of novel ADAMTS substrates and binding partners by describing the principles of mass spectrometry-based approaches and by emphasizing strategies that need to be considered for validating the physiological relevance for ADAMTS-mediated proteolysis of novel putative substrates.


Assuntos
Proteínas ADAMTS/metabolismo , Desenvolvimento Musculoesquelético , Doenças Musculoesqueléticas/enzimologia , Animais , Humanos
19.
J Exp Bot ; 72(9): 3455-3473, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33216923

RESUMO

The ATP-dependent metalloprotease FtsH12 (filamentation temperature sensitive protein H 12) has been suggested to participate in a heteromeric motor complex, driving protein translocation into the chloroplast. FtsH12 was immuno-detected in proplastids, seedlings, leaves, and roots. Expression of Myc-tagged FtsH12 under its native promotor allowed identification of FtsHi1, 2, 4, and 5, and plastidic NAD-malate dehydrogenase, five of the six interaction partners in the suggested import motor complex. Arabidopsis thaliana mutant seedlings with reduced FTSH12 abundance exhibited pale cotyledons and small, deformed chloroplasts with altered thylakoid structure. Mature plants retained these chloroplast defects, resulting in slightly variegated leaves and lower chlorophyll content. Label-free proteomics revealed strong changes in the proteome composition of FTSH12 knock-down seedlings, reflecting impaired plastid development. The composition of the translocon on the inner chloroplast membrane (TIC) protein import complex was altered, with coordinated reduction of the FtsH12-FtsHi complex subunits and accumulation of the 1 MDa TIC complex subunits TIC56, TIC214 and TIC22-III. FTSH12 overexpressor lines showed no obvious phenotype, but still displayed distinct differences in their proteome. N-terminome analyses further demonstrated normal proteolytic maturation of plastid-imported proteins irrespective of FTSH12 abundance. Together, our data suggest that FtsH12 has highest impact during seedling development; its abundance alters the plastid import machinery and impairs chloroplast development.


Assuntos
Proteases Dependentes de ATP , Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Proteínas de Membrana , Proteases Dependentes de ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas de Membrana/genética , Metaloproteases/genética , Mutação
20.
J Exp Bot ; 72(9): 3395-3409, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33640987

RESUMO

Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote virulence by targeting components of a host's innate immune system, while hosts have evolved proteins that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are translocated into host cells using type III secretion systems. Type III effector proteases irreversibly modify host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial pathogens. In plants, the study of model effector proteases has yielded important insights into the virulence mechanisms employed by pathogens to overcome their host's immune response, as well as into the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects. In recent years, the study of a larger number of effector proteases, across a wider range of pathogens, has yielded novel insights into their functions and recognition. One key limitation that remains is the lack of methods to detect protease cleavage at the proteome-wide level. We review known substrates and mechanisms of plant pathogen type III effector proteases and compare their functions with those of known type III effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function on a system-wide level.


Assuntos
Proteínas de Bactérias , Peptídeo Hidrolases , Animais , Bactérias , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA