Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.236
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(6): 1409-1423.e17, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778655

RESUMO

The evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations. In rachidial ridges, epidermal progenitors generate cortex and medullary keratinocytes, guided by Bmp and transforming growth factor ß (TGF-ß) signaling that convert rachides into adaptable bilayer composite beams. In barb ridges, epidermal progenitors generate cylindrical, plate-, or hooklet-shaped barbule cells that form fluffy branches or pennaceous vanes, mediated by asymmetric cell junction and keratin expression. Transcriptome analyses and functional studies show anterior-posterior Wnt2b signaling within the dermal papilla controls barbule cell fates with spatiotemporal collinearity. Quantitative bio-physical analyses of feathers from birds with different flight characteristics and feathers in Burmese amber reveal how multi-dimensional functionality can be achieved and may inspire future composite material designs. VIDEO ABSTRACT.


Assuntos
Adaptação Fisiológica , Plumas/anatomia & histologia , Plumas/fisiologia , Voo Animal/fisiologia , Animais , Evolução Biológica , Aves/anatomia & histologia , Moléculas de Adesão Celular/metabolismo , Citoesqueleto/metabolismo , Derme/anatomia & histologia , Células-Tronco/citologia , Fatores de Tempo , Transcriptoma/genética , Via de Sinalização Wnt/genética
2.
Genes Dev ; 38(15-16): 772-783, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39266447

RESUMO

The distinct anatomic environment in which adipose tissues arise during organogenesis is a principle determinant of their adult expansion capacity. Metabolic disease results from a deficiency in hyperplastic adipose expansion within the dermal/subcutaneous depot; thus, understanding the embryonic origins of dermal adipose is imperative. Using single-cell transcriptomics throughout murine embryogenesis, we characterized cell populations, including Bcl11b + cells, that regulate the development of dermal white adipose tissue (dWAT). We discovered that BCL11b expression modulates the Wnt signaling microenvironment to enable adipogenic differentiation in the dermal compartment. Subcutaneous and visceral adipose arises from a distinct population of Nefl + cells during embryonic organogenesis, whereas Pi16 + /Dpp4 + fibroadipogenic progenitors support obesity-stimulated hypertrophic expansion in the adult. Together, these results highlight the unique regulatory pathways used by anatomically distinct adipose depots, with important implications for human metabolic disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras , Animais , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Adipogenia/genética , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/metabolismo , Via de Sinalização Wnt/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/embriologia , Diferenciação Celular/genética , Humanos
3.
Immunity ; 53(2): 371-383.e5, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32673566

RESUMO

Cutaneous wound healing is associated with the unpleasant sensation of itching. Here we investigated the mechanisms underlying this type of itch, focusing on the contribution of soluble factors released during healing. We found high amounts of interleukin 31 (IL-31) in skin wound tissue during the peak of itch responses. Il31-/- mice lacked wound-induced itch responses. IL-31 was released by dermal conventional type 2 dendritic cells (cDC2s) recruited to wounds and increased itch sensory neuron sensitivity. Transfer of cDC2s isolated from late-stage wounds into healthy skin was sufficient to induce itching in a manner dependent on IL-31 expression. Addition of the cytokine TGF-ß1, which promotes wound healing, to dermal DCs in vitro was sufficient to induce Il31 expression, and Tgfbr1f/f CD11c-Cre mice exhibited reduced scratching and decreased Il31 expression in wounds in vivo. Thus, cDC2s promote itching during skin would healing via a TGF-ß-IL-31 axis with implications for treatment of wound itching.


Assuntos
Interleucinas/metabolismo , Células de Langerhans/fisiologia , Prurido/patologia , Células Receptoras Sensoriais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Feminino , Humanos , Interleucinas/genética , Células de Langerhans/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de Interleucina/metabolismo , Pele/citologia , Pele/crescimento & desenvolvimento , Pele/lesões , Canais de Cátion TRPV/metabolismo , Cicatrização/fisiologia
4.
Immunity ; 50(1): 121-136.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30594464

RESUMO

Dermal fibroblasts (dFBs) resist infection by locally differentiating into adipocytes and producing cathelicidin antimicrobial peptide in response to Staphylococcus aureus (S. aureus). Here, we show that neonatal skin was enriched with adipogenic dFBs and immature dermal fat that highly expressed cathelicidin. The pool of adipogenic and antimicrobial dFBs declined after birth, leading to an age-dependent loss of dermal fat and a decrease in adipogenesis and cathelidicin production in response to infection. Transforming growth factor beta (TGF-ß), which acted on uncommitted embryonic and adult dFBs and inhibited their adipogenic and antimicrobial function, was identified as a key upstream regulator of this process. Furthermore, inhibition of the TGF-ß receptor restored the adipogenic and antimicrobial function of dFBs in culture and increased resistance of adult mice to S. aureus infection. These results provide insight into changes that occur in the skin innate immune system between the perinatal and adult periods of life.


Assuntos
Envelhecimento/imunologia , Fibroblastos/fisiologia , Pele/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Gordura Subcutânea/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adipócitos/metabolismo , Adipogenia , Animais , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Humanos , Imunidade Inata , Camundongos , Catelicidinas
5.
Immunity ; 50(6): 1482-1497.e7, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31201094

RESUMO

The skin comprises tissue macrophages as the most abundant resident immune cell type. Their diverse tasks including resistance against invading pathogens, attraction of bypassing immune cells from vessels, and tissue repair require dynamic specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into subsets by adapting single-cell transcriptomics, fate mapping, and imaging. Thereby we identified a phenotypically and transcriptionally distinct subset of prenatally seeded dermal macrophages that self-maintained with very low postnatal exchange by hematopoietic stem cells. These macrophages specifically interacted with sensory nerves and surveilled and trimmed the myelin sheath. Overall, resident dermal macrophages contributed to axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by stepwise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment.


Assuntos
Diferenciação Celular/imunologia , Vigilância Imunológica , Macrófagos/imunologia , Regeneração Nervosa , Pele/imunologia , Pele/inervação , Animais , Animais Recém-Nascidos , Biomarcadores , Receptor 1 de Quimiocina CX3C/metabolismo , Derme/citologia , Derme/imunologia , Derme/metabolismo , Imunofenotipagem , Macrófagos/metabolismo , Camundongos , Pele/citologia
6.
EMBO J ; 42(19): e113880, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37602956

RESUMO

Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the epigenetic mechanisms that regulate DFP differentiation are not known. Our objective was to use multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanism that governs its differentiation potential. Our initial results indicated that the overall transcription profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage-specific genes. Surprisingly, the repressive chromatin profile of DFPs renders them unable to reform the skin in allograft assays despite their multipotent potential. We hypothesized that chromatin derepression was modulated by the H3K27me3 demethylase, Kdm6b/Jmjd3. Dermal fibroblast-specific deletion of Kdm6b/Jmjd3 in mice resulted in adipocyte compartment ablation and inhibition of mature dermal papilla functions, confirmed by additional single-cell RNA-seq, ChIP-seq, and allografting assays. We conclude that DFPs are functionally derepressed during murine skin development by Kdm6b/Jmjd3. Our studies therefore reveal a multimodal understanding of how DFPs differentiate into distinct fibroblast lineages and provide a novel publicly available multiomics search tool.


Assuntos
Cromatina , Histonas , Animais , Camundongos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Diferenciação Celular/genética , Desmetilação , Fibroblastos/metabolismo
7.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36444877

RESUMO

Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/ß-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.


Assuntos
Epiderme , Pele , Folículo Piloso , Fibroblastos , Células Epidérmicas
8.
FASEB J ; 38(17): e70022, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39250282

RESUMO

Systemic sclerosis (SSc) is a life-threatening autoimmune disease characterized by widespread fibrosis in the skin and several internal organs. Nudix Hydrolase 21 (NUDT2 or CFIm25) downregulation in fibroblasts is known to play detrimental roles in both skin and lung fibrosis. This study aims to investigate the upstream mechanisms that lead to NUDT21 repression in skin fibrosis. We identified transforming growth factor ß (TGFß1) as the primary cytokine that downregulated NUDT21 in normal skin fibroblasts. In the bleomycin-induced dermal fibrosis model, consistent with the peak activation of TGFß1 at the late fibrotic stage, NUDT21 was downregulated at this stage, and delayed NUDT21 knockdown during this fibrotic phase led to enhanced fibrotic response to bleomycin. Further investigation suggested TGFß downregulated NUDT21 through microRNA (miRNA) 181a and 181b induction. Both miR-181a and miR-181b were elevated in bleomycin-induced skin fibrosis in mice and primary fibroblasts isolated from SSc patients, and they directly targeted NUDT21 and led to its downregulation in skin fibroblasts. Functional studies demonstrated that miR-181a and miR-181b inhibitors attenuated bleomycin-induced skin fibrosis in mice in association with decreased NUDT21 expression, while miR-181a and miR-181b mimics promoted bleomycin-induced fibrosis. Overall, these findings suggest a novel role for miR-181a/b in SSc pathogenesis by repressing NUDT21 expression.


Assuntos
Bleomicina , Fibroblastos , Fibrose , MicroRNAs , Escleroderma Sistêmico , Pele , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Camundongos , Fibrose/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/induzido quimicamente , Bleomicina/toxicidade , Bleomicina/efeitos adversos , Pele/patologia , Pele/metabolismo , Feminino , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Camundongos Endogâmicos C57BL , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Células Cultivadas , Regulação para Baixo
9.
BMC Biol ; 22(1): 193, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256768

RESUMO

BACKGROUND: Foxn1-/- deficient mice are a rare model of regenerative skin wound healing among mammals. In wounded skin, the transcription factor Foxn1 interacting with hypoxia-regulated factors affects re-epithelialization, epithelial-mesenchymal transition (EMT) and dermal white adipose tissue (dWAT) reestablishment and is thus a factor regulating scar-forming/reparative healing. Here, we hypothesized that transcriptional crosstalk between Foxn1 and Hif-1α controls the switch from scarless (regenerative) to scar-present (reparative) skin wound healing. To verify this hypothesis, we examined (i) the effect of hypoxia/normoxia and Foxn1 signalling on the proteomic signature of Foxn1-/- (regenerative) dermal fibroblasts (DFs) and then (ii) explored the effect of Hif-1α or Foxn1/Hif-1α introduced by a lentiviral (LV) delivery vector to injured skin of regenerative Foxn1-/- mice with particular attention to the remodelling phase of healing. RESULTS: We showed that hypoxic conditions and Foxn1 stimulation modified the proteome of Foxn1-/- DFs. Hypoxic conditions upregulated DF protein profiles, particularly those related to extracellular matrix (ECM) composition: plasminogen activator inhibitor-1 (Pai-1), Sdc4, Plod2, Plod1, Lox, Loxl2, Itga2, Vldlr, Ftl1, Vegfa, Hmox1, Fth1, and F3. We found that Pai-1 was stimulated by hypoxic conditions in regenerative Foxn1-/- DFs but was released by DFs to the culture media exclusively upon hypoxia and Foxn1 stimulation. We also found higher levels of Pai-1 protein in DFs isolated from Foxn1+/+ mice (reparative/scar-forming) than in DFs isolated from Foxn1-/- (regenerative/scarless) mice and triggered by injury increase in Foxn1 and Pai-1 protein in the skin of mice with active Foxn1 (Foxn1+/+ mice). Then, we demonstrated that the introduction of Foxn1 and Hif-1α via lentiviral injection into the wounded skin of regenerative Foxn1-/- mice activates reparative/scar-forming healing by increasing the wounded skin area and decreasing hyaluronic acid deposition and the collagen type III to I ratio. We also identified a stimulatory effect of LV-Foxn1 + LV-Hif-1α injection in the wounded skin of Foxn1-/- mice on Pai-1 protein levels. CONCLUSIONS: The present data highlight the effect of hypoxia and Foxn1 on the protein profile and functionality of regenerative Foxn1-/- DFs and demonstrate that the introduction of Foxn1 and Hif-1α into the wounded skin of regenerative Foxn1-/- mice activates reparative/scar-forming healing.


Assuntos
Cicatriz , Fibroblastos , Fatores de Transcrição Forkhead , Cicatrização , Animais , Cicatrização/fisiologia , Cicatrização/genética , Fibroblastos/metabolismo , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Cicatriz/metabolismo , Pele/metabolismo , Pele/lesões , Camundongos Knockout , Proteoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteômica/métodos , Hipóxia/metabolismo
10.
J Infect Dis ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166299

RESUMO

Treatment regimens for post-kala-azar dermal leishmaniasis (PKDL) are usually extrapolated from those for visceral leishmaniasis (VL), but drug pharmacokinetics (PK) can differ due to disease-specific variations in absorption, distribution, and elimination. This study characterized PK differences in paromomycin and miltefosine between 109 PKDL and 264 VL patients from eastern Africa. VL patients showed 0.55-fold (95%CI: 0.41-0.74) lower capacity for paromomycin saturable reabsorption in renal tubules, and required a 1.44-fold (1.23-1.71) adjustment when relating renal clearance to creatinine-based eGFR. Miltefosine bioavailability in VL patients was lowered by 69% (62-76) at treatment start. Comparing PKDL to VL patients on the same regimen, paromomycin plasma exposures were 0.74-0.87-fold, while miltefosine exposure until the end of treatment day was 1.4-fold. These pronounced PK differences between PKDL and VL patients in eastern Africa highlight the challenges of directly extrapolating dosing regimens from one leishmaniasis presentation to another.

11.
J Infect Dis ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383212

RESUMO

Post-kala-azar dermal leishmaniasis (PKDL) is a skin condition that occurs in a small percentage of people who have been cured of visceral leishmaniasis (VL), and contributes to transmission of VL. The rK39 rapid test cannot decisively diagnose PKDL due to presence of antileishmanial antibodies from past VL episodes. CL Detect™ Rapid Test, an in-vitro diagnostic test that detects Leishmania antigen peroxidoxin, was assessed for diagnosing PKDL. The CL Detect RDT had 73.3% sensitivity and 100% specificity in the study. The test can be used as a primary screening tool to monitor PKDL in endemic regions and identify active Leishmania infection.

12.
Semin Cell Dev Biol ; 128: 137-144, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35339360

RESUMO

The extracellular matrix (ECM) is a dynamic structure that surrounds and anchors cellular components in tissues. In addition to functioning as a structural scaffold for cellular components, ECMs also regulate diverse biological functions, including cell adhesion, proliferation, differentiation, migration, cell-cell interactions, and intracellular signaling events. Dermal fibroblasts (dFBs), the major cellular source of skin ECM, develop from a common embryonic precursor to the highly heterogeneous subpopulations during development and adulthood. Upon injury, dFBs migrate into wound granulation tissue and transdifferentiate into myofibroblasts, which play a critical role in wound contraction and dermal ECM regeneration and deposition. In this review, we describe the plasticity of dFBs during development and wound healing and how various dFB-derived ECM molecules, including collagen, proteoglycans, glycosaminoglycans, fibrillins and matricellular proteins are expressed and regulated, and in turn how these ECM molecules play a role in regulating the function of dFBs and immune cells. Finally, we describe how dysregulation of ECM matrix is associated the pathogenesis of wound healing related skin diseases, including chronic wounds and keloid.


Assuntos
Matriz Extracelular , Cicatrização , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostase , Pele
13.
Infect Immun ; 92(2): e0050423, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38193711

RESUMO

The intracellular protozoan parasite Leishmania donovani causes debilitating human diseases that involve visceral and dermal manifestations. Type 3 interferons (IFNs), also referred to as lambda IFNs (IFNL, IFN-L, or IFN-λ), are known to play protective roles against intracellular pathogens at the epithelial surfaces. Herein, we show that L. donovani induces IFN-λ3 in human as well as mouse cell line-derived macrophages. Interestingly, IFN-λ3 treatment significantly decreased parasite load in infected cells, mainly by increasing reactive oxygen species production. Microscopic examination showed that IFN-λ3 inhibited uptake but not replication, while the phagocytic ability of the cells was not affected. This was confirmed by experiments that showed that IFN-λ3 could decrease parasite load only when added to the medium at earlier time points, either during or soon after parasite uptake, but had no effect on parasite load when added at 24 h post-infection, suggesting that an early event during parasite uptake was targeted. Furthermore, the parasites could overcome the inhibitory effect of IFN-λ3, which was added at earlier time points, within 2-3 days post-infection. BALB/c mice treated with IFN-λ3 before infection led to a significant increase in expression of IL-4 and ARG1 post-infection in the spleen and liver, respectively, and to different pathological changes, especially in the liver, but not to changes in parasite load. Treatment with IFN-λ3 during infection did not decrease the parasite load in the spleen either. However, IFN-λ3 was significantly increased in the sera of visceral leishmaniasis patients, and the IFNL genetic variant rs12979860 was significantly associated with susceptibility to leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Parasitos , Animais , Humanos , Camundongos , Linhagem Celular , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C
14.
J Cell Physiol ; : e31463, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377615

RESUMO

Increased prevalence of skin ageing is a growing concern due to an ageing global population and has both sociological and psychological implications. The use of more clinically predictive in vitro methods for dermatological research is becoming commonplace due to initiatives and the cost of clinical testing. In this study, we utilise a well-defined and characterised bioengineered skin construct as a tool to investigate the cellular and molecular dynamics involved in skin ageing from a dermal perspective. Through incorporation of ageing fibroblasts into the dermal compartment we demonstrate the significant impact of dermal-epidermal crosstalk on the overlying epidermal epithelium. We characterise the paracrine nature of dermal-epidermal communication and the impact this has during skin ageing. Soluble factors, such as inflammatory cytokines released as a consequence of senescence associated secretory phenotype (SASP) from ageing fibroblasts, are known to play a pivotal role in skin ageing. Here, we demonstrate their effect on epidermal morphology and thickness, but not keratinocyte differentiation or tissue structure. Through a novel in vitro strategy utilising bioengineered tissue constructs, this study offers a unique reductionist approach to study epidermal and dermal compartments in isolation and tandem.

15.
Curr Issues Mol Biol ; 46(9): 9245-9254, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39329898

RESUMO

Flavonoids are important natural compounds characterized by their extensive biological activities. Citrus flavonoids represent a significant segment of the broader flavonoid category. Naringenin, an integral part of this series, is recognized for its powerful anti-inflammatory and antioxidant properties. In addition, considering the lack of existing research on naringenin's potential effectiveness and intracellular mechanisms of action in skin-related applications, especially as a cosmetic ingredient, this study aimed to explore naringenin's role in reducing the fundamental generation of reactive oxygen species. This was achieved by examining its inhibitory effects on the expression levels of NADPH oxidase and iNOS, ultimately leading to a reduction in NO production. This research examined the anti-inflammatory and antioxidant capacities of naringenin by employing a cellular senescence model of LPS-induced HDFs. The evaluation of naringenin's efficacy was validated through several investigative procedures, including the NF-κB luciferase assay, ELISA assay, and qRT-PCR. To verify the anti-inflammatory effectiveness of naringenin, we measured the responsive elements of NF-κB using a luciferase reporter assay. This assessment revealed that naringenin could decrease the concentration of genes activated by NF-κB. Moreover, we found that naringenin inhibited the transcriptional expression of known NF-κB-regulated inflammatory cytokines, including IL-1ß, IL-6, and IL-8. In addition, results from the qRT-PCR analysis indicated that naringenin facilitated a reduction in iNOS expression. Based on the data gathered and analyzed in this study, it can be conclusively inferred that naringenin possesses promising potential as a cosmetic ingredient, offering both anti-inflammatory and antioxidant benefits.

16.
Angiogenesis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842751

RESUMO

Tissue-engineered skin substitutes (TESS) emerged as a new therapeutic option to improve skin transplantation. However, establishing an adequate and rapid vascularization in TESS is a critical factor for their clinical application and successful engraftment in patients. Therefore, several methods have been applied to improve the vascularization of skin substitutes including (i) modifying the structural and physicochemical properties of dermal scaffolds; (ii) activating biological scaffolds with growth factor-releasing systems or gene vectors; and (iii) developing prevascularized skin substitutes by loading scaffolds with capillary-forming cells. This review provides a detailed overview of the most recent and important developments in the vascularization strategies for skin substitutes. On the one hand, we present cell-based approaches using stem cells, microvascular fragments, adipose tissue derived stromal vascular fraction, endothelial cells derived from blood and skin as well as other pro-angiogenic stimulation methods. On the other hand, we discuss how distinct 3D bioprinting techniques and microfluidics, miRNA manipulation, cell sheet engineering and photosynthetic scaffolds like GelMA, can enhance skin vascularization for clinical applications. Finally, we summarize and discuss the challenges and prospects of the currently available vascularization techniques that may serve as a steppingstone to a mainstream application of skin tissue engineering.

17.
J Neuroinflammation ; 21(1): 23, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233858

RESUMO

BACKGROUND: Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. METHODS: We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. RESULTS: Intraepidermal Schwann cells were detected in human skin of the finger-but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other-but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. CONCLUSIONS: Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.


Assuntos
Síndromes da Dor Regional Complexa , Distrofia Simpática Reflexa , Humanos , Animais , Camundongos , Síndromes da Dor Regional Complexa/patologia , Pele/patologia , Hiperalgesia/etiologia , Hiperalgesia/patologia , Dor/patologia , Células de Schwann/patologia
18.
Small ; 20(32): e2311166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693075

RESUMO

Thermoresponsive nanogels (tNGs) are promising candidates for dermal drug delivery. However, poor incorporation of hydrophobic drugs into hydrophilic tNGs limits the therapeutic efficiency. To address this challenge, ß-cyclodextrins (ß-CD) are functionalized by hyperbranched polyglycerol serving as crosslinkers (hPG-ßCD) to fabricate ßCD-tNGs. This novel construct exhibits augmented encapsulation of hydrophobic drugs, shows the appropriate thermal response to dermal administration, and enhances the dermal penetration of payloads. The structural influences on the encapsulation capacity of ßCD-tNGs for hydrophobic drugs are analyzed, while concurrently retaining their efficacy as skin penetration enhancers. Various synthetic parameters are considered, encompassing the acrylation degree and molecular weight of hPG-ßCD, as well as the monomer composition of ßCD-tNGs. The outcome reveals that ßCD-tNGs substantially enhance the aqueous solubility of Nile Red elevating to 120 µg mL-1 and augmenting its dermal penetration up to 3.33 µg cm-2. Notably, the acrylation degree of hPG-ßCD plays a significant role in dermal drug penetration, primarily attributed to the impact on the rigidity and hydrophilicity of ßCD-tNGs. Taken together, the introduction of the functionalized ß-CD as the crosslinker in tNGs presents a novel avenue to enhance the efficacy of hydrophobic drugs in dermatological applications, thereby offering promising opportunities for boosted therapeutic outcomes.


Assuntos
Glicerol , Interações Hidrofóbicas e Hidrofílicas , Nanogéis , Polímeros , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Glicerol/química , Nanogéis/química , Polímeros/química , Animais , Polietilenoimina/química , Reagentes de Ligações Cruzadas/química , Temperatura , Absorção Cutânea , Pele/metabolismo , Polietilenoglicóis/química , Oxazinas
19.
Small ; 20(28): e2400644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326079

RESUMO

Tissue development is mediated by a combination of mechanical and biological signals. Currently, there are many reports on biological signals regulating repair. However, insufficient attention is paid to the process of mechanical regulation, especially the active mechanical regulation in vivo, which has not been realized. Herein, a novel dynamically regulated repair system for both in vitro and in vivo applications is developed, which utilizes magnetic nanoparticles as non-contact actuators to activate hydrogels. The magnetic hydrogel can be periodically activated and deformed to different amplitudes by a dynamic magnetic system. An in vitro skin model is used to explore the impact of different dynamic stimuli on cellular mechano-transduction signal activation and cell differentiation. Specifically, the effect of mechanical stimulation on the phenotypic transition of fibroblasts to myofibroblasts is investigated. Furthermore, in vivo results verify that dynamic massage can simulate and enhance the traction effect in skin defects, thereby accelerating the wound healing process by promoting re-epithelialization and mediating dermal contraction.


Assuntos
Bandagens , Massagem , Cicatrização , Animais , Massagem/métodos , Fibroblastos , Humanos , Hidrogéis/química , Diferenciação Celular , Pele , Camundongos , Miofibroblastos/citologia
20.
Rheumatology (Oxford) ; 63(3): 817-825, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314987

RESUMO

OBJECTIVES: Our previous studies have demonstrated that the Damage Associated Molecular Pattern (DAMP) protein, S100A4, is overexpressed in the involved skin and peripheral blood of patients with SSc. It is associated with skin and lung involvement, and disease activity. By contrast, lack of S100A4 prevented the development of experimental dermal fibrosis. Herein we aimed to evaluate the effect of murine anti-S100A4 mAb 6B12 in the treatment of preestablished experimental dermal fibrosis. METHODS: The effects of 6B12 were assessed at therapeutic dosages in a modified bleomycin-induced dermal fibrosis mouse model by evaluating fibrotic (dermal thickness, proliferation of myofibroblasts, hydroxyproline content, phosphorylated Smad3-positive cell count) and inflammatory (leukocytes infiltrating the lesional skin, systemic levels of selected cytokines and chemokines) outcomes, and transcriptional profiling (RNA sequencing). RESULTS: Treatment with 7.5 mg/kg 6B12 attenuated and might even reduce pre-existing dermal fibrosis induced by bleomycin as evidenced by reduction in dermal thickness, myofibroblast count and collagen content. These antifibrotic effects were mediated by the downregulation of TGF-ß/Smad signalling and partially by reducing the number of leukocytes infiltrating the lesional skin and decrease in the systemic levels of IL-1α, eotaxin, CCL2 and CCL5. Moreover, transcriptional profiling demonstrated that 7.5 mg/kg 6B12 also modulated several profibrotic and proinflammatory processes relevant to the pathogenesis of SSc. CONCLUSION: Targeting S100A4 by the 6B12 mAb demonstrated potent antifibrotic and anti-inflammatory effects on bleomycin-induced dermal fibrosis and provided further evidence for the vital role of S100A4 in the pathophysiology of SSc.


Assuntos
Alarminas , Pele , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Bleomicina/toxicidade , Modelos Animais de Doenças , Proteína A4 de Ligação a Cálcio da Família S100/genética , Pele/patologia , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA