RESUMO
The receptor tyrosine kinase EGFR is regulated by complex conformational changes, and this conformational control is disturbed in certain types of cancer. Many ligands are known to bind EGFR in its active conformation, thereby preventing ATP from binding. Only a few ligands are known to stabilize EGFR in its inactive conformation, thus providing novel strategies for perturbing EGFR activity. We report a direct binding assay that enables the identification of novel ligands that bind to and stabilize the inactive conformation of EGFR.
Assuntos
Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Sítios de Ligação , Receptores ErbB/química , Receptores ErbB/genética , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/metabolismo , Lapatinib , Ligantes , Mutagênese Sítio-Dirigida , Ligação Proteica , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína , Quinazolinas/química , Quinazolinas/metabolismo , Espectrometria de FluorescênciaRESUMO
Nuclear receptors are transcription factors that are important targets for current drug discovery efforts as they play a role in many pathological processes. Their activity can be regulated by small molecules like hormones and drugs that can have agonistic or antagonistic functions. These ligands bind to the receptor and account for diverse conformational changes that are crucial determinants for the receptor activity. Here, we set out to develop FLiN (fluorescent labels in nuclear receptors), a direct binding assay that detects conformational changes in the estrogen receptor. The assay is based on the introduction of a cysteine residue and subsequent specific labeling of the receptor with a thiol-reactive fluorophore. Changes in the receptor conformation upon ligand binding lead to differences in the microenvironment of the fluorophore and alter its emission spectrum. The FLiN assay distinguishes between different binding modes and is suitable for high-throughput screening.