Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792078

RESUMO

Disuse muscle atrophy (DMA) is a significant healthcare challenge characterized by progressive loss of muscle mass and function resulting from prolonged inactivity. The development of effective strategies for muscle recovery is essential. In this study, we established a DMA mouse model through hindlimb suspension to evaluate the therapeutic potential of lactate in alleviating the detrimental effects on the gastrocnemius muscle. Using NMR-based metabolomic analysis, we investigated the metabolic changes in DMA-injured gastrocnemius muscles compared to controls and evaluated the beneficial effects of lactate treatment. Our results show that lactate significantly reduced muscle mass loss and improved muscle function by downregulating Murf1 expression, decreasing protein ubiquitination and hydrolysis, and increasing myosin heavy chain levels. Crucially, lactate corrected perturbations in four key metabolic pathways in the DMA gastrocnemius: the biosynthesis of phenylalanine, tyrosine, and tryptophan; phenylalanine metabolism; histidine metabolism; and arginine and proline metabolism. In addition to phenylalanine-related pathways, lactate also plays a role in regulating branched-chain amino acid metabolism and energy metabolism. Notably, lactate treatment normalized the levels of eight essential metabolites in DMA mice, underscoring its potential as a therapeutic agent against the consequences of prolonged inactivity and muscle wasting. This study not only advances our understanding of the therapeutic benefits of lactate but also provides a foundation for novel treatment approaches aimed at metabolic restoration and muscle recovery in conditions of muscle wasting.


Assuntos
Ácido Láctico , Metabolômica , Músculo Esquelético , Animais , Camundongos , Metabolômica/métodos , Ácido Láctico/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Modelos Animais de Doenças , Espectroscopia de Ressonância Magnética , Masculino , Proteínas Musculares/metabolismo , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/tratamento farmacológico , Transtornos Musculares Atróficos/patologia , Ubiquitina-Proteína Ligases/metabolismo , Metaboloma/efeitos dos fármacos , Elevação dos Membros Posteriores , Proteínas com Motivo Tripartido/metabolismo , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo
2.
J Cell Physiol ; 236(11): 7612-7624, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33934360

RESUMO

Muscle disuse induces atrophy through increased reactive oxygen species (ROS) released from damaged mitochondria. Mitophagy, the autophagic degradation of mitochondria, is associated with increased ROS production. However, the mitophagy activity status during disuse-induced muscle atrophy has been a subject of debate. Here, we developed a new mitophagy reporter mouse line to examine how disuse affected mitophagy activity in skeletal muscles. Mice expressing tandem mCherry-EGFP proteins on mitochondria were then used to monitor the dynamics of mitophagy activity. The reporter mice demonstrated enhanced mitophagy activity and increased ROS production in atrophic soleus muscles following a 14-day hindlimb immobilization. Results also showed an increased expression of multiple mitophagy genes, including Bnip3, Bnip3l, and Park2. Our findings thus conclude that disuse enhances mitophagy activity and ROS production in atrophic skeletal muscles and suggests that mitophagy is a potential therapeutic target for disuse-induced muscle atrophy.


Assuntos
Mitocôndrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Elevação dos Membros Posteriores , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Inanição , Fatores de Tempo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA