Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2015): 20231699, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38264780

RESUMO

Dragonfly nymphs breathe water using tidal ventilation, a highly unusual strategy in water-breathing animals owing to the high viscosity, density and low oxygen (O2) concentration of water. This study examines how well these insects extract O2 from the surrounding water during progressive hypoxia. Nymphs were attached to a custom-designed respiro-spirometer to simultaneously measure tidal volume, ventilation frequency and metabolic rate. Oxygen extraction efficiencies (OEE) were calculated across four partial pressure of oxygen (pO2) treatments, from normoxia to severe hypoxia. While there was no significant change in tidal volume, ventilation frequency increased significantly from 9.4 ± 1.2 breaths per minute (BPM) at 21.3 kPa to 35.6 ± 2.9 BPM at 5.3 kPa. Metabolic rate increased significantly from 1.4 ± 0.3 µl O2 min-1 at 21.3 kPa to 2.1 ± 0.4 µl O2 min-1 at 16.0 kPa, but then returned to normoxic levels as O2 levels declined further. OEE of nymphs was 40.1 ± 6.1% at 21.3 kPa, and did not change significantly during hypoxia. Comparison to literature shows that nymphs maintain their OEE during hypoxia unlike other aquatic tidal-breathers and some unidirectional breathers. This result, and numerical models simulating experimental conditions, indicate that nymphs maintain these extraction efficiencies by increasing gill conductance and/or lowering internal pO2 to maintain a sufficient diffusion gradient across their respiratory surface.


Assuntos
Brânquias , Odonatos , Animais , Hipóxia , Oxigênio , Ninfa , Água
2.
Materials (Basel) ; 14(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503962

RESUMO

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young's modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA