Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacokinet Pharmacodyn ; 51(4): 367-384, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38554227

RESUMO

The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.


Assuntos
Ciclofosfamida , Citocromo P-450 CYP3A , Docetaxel , Interações Medicamentosas , Epirubicina , Modelos Biológicos , Humanos , Epirubicina/farmacocinética , Epirubicina/administração & dosagem , Docetaxel/farmacocinética , Docetaxel/administração & dosagem , Ciclofosfamida/farmacocinética , Ciclofosfamida/administração & dosagem , Feminino , Citocromo P-450 CYP3A/metabolismo , Pessoa de Meia-Idade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Adulto , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Taxoides/farmacocinética , Taxoides/administração & dosagem , Simulação por Computador , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Indutores do Citocromo P-450 CYP3A/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacocinética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem
2.
Biopharm Drug Dispos ; 45(3): 149-158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886878

RESUMO

Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17ß-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (µM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (µM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.


Assuntos
Interações Medicamentosas , Flavonoides , Glucuronosiltransferase , Microssomos Hepáticos , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Humanos , Flavonoides/farmacologia , Microssomos Hepáticos/metabolismo , Estradiol/farmacologia , Himecromona/farmacologia , Propofol/farmacologia , Inibidores Enzimáticos/farmacologia
3.
Biol Pharm Bull ; 46(2): 170-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724945

RESUMO

Uricosuric agents lower serum uric acid levels by increasing urinary excretion via inhibition of urate transporter 1 (URAT1), urate reabsorption transporter in the renal proximal tubules. Probenecid and benzbromarone have been used as uricosurics, but these drugs inhibit organic anion transporters (OATs) in addition to URAT1. In this study, we investigated whether uricosuric agents interacted with adefovir, known as a substrate for OAT1, using Sprague-Dawley (SD) rats. Furthermore, involvement of other transporters, multi-drug resistance protein 2 (MRP2) in this interaction was examined using Mrp2-deficient rats. Probenecid and lesinurad increased plasma adefovir concentrations and decreased kidney-to-plasma partition coefficient (Kp) in these rats, presumably by inhibiting Oat1. Although benzbromarone had no effect on plasma adefovir concentration, it increased the Kp to 141% in SD rats. Since this effect was abolished in Mrp2-deficient rats, together with the MRP2 inhibition study, it is suggested that benzbromarone inhibits Mrp2-mediated adefovir excretion from the kidney. In contrast, dotinurad, a novel uricosuric agent that selectively inhibits URAT1, had no effect on the plasma and kidney concentrations of adefovir. Therefore, due to the lack of interaction with adefovir, dotinurad is expected to have low drug-drug interaction risk mediated by OAT1, and also by MRP2.


Assuntos
Transportadores de Ânions Orgânicos , Uricosúricos , Ratos , Animais , Uricosúricos/farmacologia , Benzobromarona , Probenecid/farmacologia , Probenecid/metabolismo , Ácido Úrico , Ratos Sprague-Dawley , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
4.
J Pharmacokinet Pharmacodyn ; 50(5): 365-376, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344637

RESUMO

Enzalutamide is known to strongly induce cytochrome P450 3A4 (CYP3A4). Furthermore, enzalutamide showed induction and inhibition of P-glycoprotein (P-gp) in in vitro studies. A clinical drug-drug interaction (DDI) study between enzalutamide and digoxin, a typical P-gp substrate, suggested enzalutamide has weak inhibitory effect on P-gp substrates. Direct oral anticoagulants (DOACs), such as apixaban and rivaroxaban, are dual substrates of CYP3A4 and P-gp, and hence it is recommended to avoid co-administration of these DOACs with combined P-gp and strong CYP3A inducers. Enzalutamide's net effect on P-gp and CYP3A for apixaban and rivaroxaban plasma exposures is of interest to physicians who treat patients for venous thromboembolism with prostate cancer. Accordingly, a physiologically-based pharmacokinetic (PBPK) analysis was performed to predict the magnitude of DDI on apixaban and rivaroxaban exposures in the presence of 160 mg once-daily dosing of enzalutamide. The PBPK models of enzalutamide and M2, a major metabolite of enzalutamide which also has potential to induce CYP3A and P-gp and inhibit P-gp, were developed and verified as perpetrators of CYP3A-and P-gp-mediated interaction. Simulation results predicted a 31% decrease in AUC and no change in Cmax for apixaban and a 45% decrease in AUC and a 25% decrease in Cmax for rivaroxaban when 160 mg multiple doses of enzalutamide were co-administered. In summary, enzalutamide is considered to decrease apixaban and rivaroxaban exposure through the combined effects of CYP3A induction and net P-gp inhibition. Concurrent use of these drugs warrants careful monitoring for efficacy and safety.


Assuntos
Citocromo P-450 CYP3A , Rivaroxabana , Masculino , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Preparações Farmacêuticas/metabolismo , Modelos Biológicos
5.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562875

RESUMO

Schizandrol A (SZA) and schizandrol B (SZB) are two active ingredients of Wuzhi capsule (WZC), a Chinese proprietary medicine commonly prescribed to alleviate tacrolimus (FK-506)-induced hepatoxicity in China. Due to their inhibitory effects on cytochrome P450 (CYP) 3A enzymes, SZA/SZB may display drug-drug interaction (DDI) with tacrolimus. To identify the extent of this DDI, the enzymes' inhibitory profiles, including a 50% inhibitory concentration (IC50) shift, reversible inhibition (RI) and time-dependent inhibition (TDI) were examined with pooled human-liver microsomes (HLMs) and CYP3A5-genotyped HLMs. Subsequently, the acquired parameters were integrated into a physiologically based pharmacokinetic (PBPK) model to quantify the interactions between the SZA/SZB and the tacrolimus. The metabolic studies indicated that the SZB displayed both RI and TDI on CYP3A4 and CYP3A5, while the SZA only exhibited TDI on CYP3A4 to a limited extent. Moreover, our PBPK model predicted that multiple doses of SZB would increase tacrolimus exposure by 26% and 57% in CYP3A5 expressers and non-expressers, respectively. Clearly, PBPK modeling has emerged as a powerful approach to examine herb-involved DDI, and special attention should be paid to the combined use of WZC and tacrolimus in clinical practice.


Assuntos
Citocromo P-450 CYP3A , Tacrolimo , Ciclo-Octanos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450 , Dioxóis , Interações Medicamentosas , Humanos , Imunossupressores/farmacocinética , Lignanas , Modelos Biológicos , Compostos Policíclicos , Tacrolimo/farmacocinética
6.
Pharm Res ; 37(12): 250, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33237382

RESUMO

PURPOSE: To provide whole-body physiologically based pharmacokinetic (PBPK) models of the potent clinical organic anion transporter (OAT) inhibitor probenecid and the clinical OAT victim drug furosemide for their application in transporter-based drug-drug interaction (DDI) modeling. METHODS: PBPK models of probenecid and furosemide were developed in PK-Sim®. Drug-dependent parameters and plasma concentration-time profiles following intravenous and oral probenecid and furosemide administration were gathered from literature and used for model development. For model evaluation, plasma concentration-time profiles, areas under the plasma concentration-time curve (AUC) and peak plasma concentrations (Cmax) were predicted and compared to observed data. In addition, the models were applied to predict the outcome of clinical DDI studies. RESULTS: The developed models accurately describe the reported plasma concentrations of 27 clinical probenecid studies and of 42 studies using furosemide. Furthermore, application of these models to predict the probenecid-furosemide and probenecid-rifampicin DDIs demonstrates their good performance, with 6/7 of the predicted DDI AUC ratios and 4/5 of the predicted DDI Cmax ratios within 1.25-fold of the observed values, and all predicted DDI AUC and Cmax ratios within 2.0-fold. CONCLUSIONS: Whole-body PBPK models of probenecid and furosemide were built and evaluated, providing useful tools to support the investigation of transporter mediated DDIs.


Assuntos
Furosemida/farmacocinética , Modelos Biológicos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Probenecid/farmacocinética , Administração Intravenosa , Administração Oral , Adulto , Biotransformação , Simulação por Computador , Vias de Eliminação de Fármacos , Interações Medicamentosas , Feminino , Furosemida/administração & dosagem , Furosemida/sangue , Humanos , Masculino , Transportadores de Ânions Orgânicos/metabolismo , Probenecid/administração & dosagem , Probenecid/sangue , Rifampina/farmacocinética
7.
J Biomed Inform ; 112: 103603, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33153975

RESUMO

As a medicine safety issue, Drug-Drug Interaction (DDI) may become an unexpected threat for causing Adverse Drug Events (ADEs). There is a growing demand for computational methods to efficiently and effectively analyse large-scale data to detect signals of Adverse Drug-drug Interactions (ADDIs). In this paper, we aim to detect high-quality signals of ADDIs which are non-spurious and non-redundant. We propose a new method which employs the framework of Bayesian network to infer the direct associations between the target ADE and medicines, and uses domain knowledge to facilitate the learning of Bayesian network structures. To improve efficiency and avoid redundancy, we design a level-wise algorithm with pruning strategy to search for high-quality ADDI signals. We have applied the proposed method to the United States Food and Drug Administration's (FDA) Adverse Event Reporting System (FAERS) data. The result shows that 54.45% of detected signals are verified as known DDIs and 10.89% were evaluated as high-quality ADDI signals, demonstrating that the proposed method could be a promising tool for ADDI signal detection.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas , Sistemas de Notificação de Reações Adversas a Medicamentos , Teorema de Bayes , Mineração de Dados , Interações Medicamentosas , Humanos , Estados Unidos , United States Food and Drug Administration
8.
Zhongguo Zhong Yao Za Zhi ; 45(4): 923-931, 2020 Feb.
Artigo em Zh | MEDLINE | ID: mdl-32237495

RESUMO

With the widespread use of traditional Chinese medicine(TCM) and the integration of TCM and western medicine, drug-drug interaction(DDI) is considered as a major cause of therapeutic failures and side effects. Cytochrome P450 enzymes(CYPs) are responsible for large number of drug metabolism. CYP3 A4 and CYP2 D6, two important CYP isoforms, are responsible for about 80% drug metabolism of CYPs super family. The inhibition of CYPs is likely to be the most common factor leading to adverse DDI. Therefore, it is of great significance to predict potential CYP3 A4 and CYP2 D6 inhibitors to prevent the DDI. A fast and low-cost me-thod for calculating and predicting CYP inhibiting components was established in this paper, namely support vector machine(SVM) and molecular docking technology which are used to predict and screen drugs. Firstly, 12 qualitative models of two targets were established by using SVM, and the optimal model was selected to predict the compounds in traditional Chinese medicine database(TCMD). Then, molecular docking technology was used to establish docking model. By analyzing the key amino acids involved in drug-target interactions and combining with SVM model, potential inhibitors of CYP3 A4 and CYP2 D6 were found. From the computational results, astin D and epiberberine exhibited inhibition effect on CYP3 A4 and CYP2 D6, respectively. Astin D was only found in astins family from Aster tataricus, while epiberberine was considered to be the active constituent of Coptidis Rhizoma. Therefore, for the risk of DDI, extra attention should be paid to the source of these potential inhibitors, Asteris Radix et Rhizoma and Coptidis Rhizoma. This computational method provides technical support for discovering potential natural inhibitors of CYPs from Chinese herbs by using SVM and molecular docking model, and it is also helpful to recognize the CYPs-mediated DDI existing in TCM, providing research ideas for further pharmacovigilance of integrated therapy.


Assuntos
Inibidores das Enzimas do Citocromo P-450/análise , Medicamentos de Ervas Chinesas/química , Sistema Enzimático do Citocromo P-450 , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Plantas Medicinais/química
9.
Molecules ; 24(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615114

RESUMO

Silymarin, the extract of milk thistle, and its major active flavonolignan silybin, are common products widely used in the phytotherapy of liver diseases. They also have promising effects in protecting the pancreas, kidney, myocardium, and the central nervous system. However, inconsistent results are noted in the different clinical studies due to the low bioavailability of silymarin. Extensive studies were conducted to explore the metabolism and transport of silymarin/silybin as well as the impact of its consumption on the pharmacokinetics of other clinical drugs. Here, we aimed to summarize and highlight the current knowledge of the metabolism and transport of silymarin. It was concluded that the major efflux transporters of silybin are multidrug resistance-associated protein (MRP2) and breast cancer resistance protein (BCRP) based on results from the transporter-overexpressing cell lines and MRP2-deficient (TR-) rats. Nevertheless, compounds that inhibit the efflux transporters MRP2 and BCRP can enhance the absorption and activity of silybin. Although silymarin does inhibit certain drug-metabolizing enzymes and drug transporters, such effects are unlikely to manifest in clinical settings. Overall, silymarin is a safe and well-tolerated phytomedicine.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Hepatopatias/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Silimarina/uso terapêutico , Animais , Antioxidantes , Flavonolignanos/metabolismo , Humanos , Hepatopatias/genética , Hepatopatias/patologia , Silybum marianum/química , Proteína 2 Associada à Farmacorresistência Múltipla , Fitoterapia , Ratos , Silibina/metabolismo
10.
Molecules ; 24(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181731

RESUMO

Celastrol and triptolide, as the two main bio-activity ingredients in Tripterygium wilfordii, have wide anticancer pharmacological potency, as well as anti-inflammatory and immunosuppression effects. However, they have potential hepatotoxicity and underlying mechanisms of them-induced toxicity mediated by hepatic CYP450s have not been well delineated. In the present study, we accessed the toxic effects and possible mechanism of celastrol and triptolide on primary rat hepatocytes. Models of subdued/enhanced activity of CYP450 enzymes in primary rat hepatocytes were also constructed to evaluate the relationship between the two ingredients and CYP450s. LC-MS/MS was used to establish a detection method of the amount of triptolide in rat hepatocytes. As the results, cell viability, biochemical index, and mitochondrial membrane potential indicated that celastrol and triptolide had toxic potencies on hepatocytes. Moreover, the toxic effects were enhanced when the compounds combined with 1-aminobenzotriazole (enzyme inhibitor) while they were mitigated when combined with phenobarbital (an enzyme inducer). Meanwhile, celastrol could affect the amount of triptolide in the cell. We therefore put forward that increase of triptolide in the cell might be one of the main causes of hepatotoxicity caused by Tripterygium wilfordii.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/toxicidade , Fígado/patologia , Fenantrenos/toxicidade , Tripterygium/química , Triterpenos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos/química , Interações Medicamentosas , Compostos de Epóxi/química , Compostos de Epóxi/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Masculino , Triterpenos Pentacíclicos , Fenantrenos/química , Fenobarbital/farmacologia , Ratos Wistar , Triazóis/farmacologia , Triterpenos/química
11.
Zhongguo Zhong Yao Za Zhi ; 44(18): 4043-4047, 2019 Sep.
Artigo em Zh | MEDLINE | ID: mdl-31872743

RESUMO

The purpose of this study was to investigate the effect of apigenin on UGT1 A1 enzyme activity and to predict the potential drug-drug interaction of apigenin in clinical use. First,on the basis of previous experiments,the binding targets and binding strength of apigenin to UGT1 A1 enzyme were predicted by computer molecular docking method. Then the inhibitory effect of apigenin on UGT1 A1 enzyme was evaluated by in vitro human liver microsomal incubation system. Molecular docking results showed that apigenin was docked into the active region of UGT1 A1 enzyme protein F,consistent with the active region of bilirubin docking,with moderate affinity. Apigenin flavone mother nucleus mainly interacted with amino acid residues ILE343 and VAL345 to form hydrophobic binding Pi-Alkyl. At the same time,the hydroxyl group on the mother nucleus and the amino acid residue LYS346 formed an additional hydrogen bond,which increased the binding of the molecule to the protein. These results suggested that the flavonoid mother nucleus structure had a special structure binding to the enzyme protein UGT1 A1,and the introduction of hydroxyl groups into the mother nucleus can increase the binding ability. In vitro inhibition experiments showed that apigenin had a moderate inhibitory effect on UGT1 A1 enzyme in a way of competitive inhibition,which was consistent with the results of molecular docking. The results of two experiments showed that apigenin was the substrate of UGT1 A1 enzyme,which could inhibit the activity of UGT1 A1 enzyme competitively,and there was a risk of drug interaction between apigenin and UGT1 A1 enzyme substrate in clinical use.


Assuntos
Apigenina/química , Bilirrubina/química , Interações Medicamentosas , Microssomos Hepáticos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Glucuronosiltransferase/metabolismo , Humanos , Ligação de Hidrogênio
12.
Biopharm Drug Dispos ; 39(3): 152-163, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29451681

RESUMO

Ritonavir is one of several ketoconazole alternatives used to evaluate strong CYP3A4 inhibition potential in clinical drug-drug interaction (DDI) studies. In this study, four physiologically based pharmacokinetic (PBPK) models of ritonavir as an in vivo time-dependent inhibitor of CYP3A4 were created and verified for oral doses of 20, 50, 100 and 200 mg using the fraction absorbed (Fa ) and oral clearance (CLoral ) values reported in the literature, because transporter and CYP enzyme reaction phenotyping data were not available. The models were used subsequently to predict and compare the magnitude of the AUC increase in nine reference DDI studies evaluating the effect of ritonavir at steady-state on midazolam (CYP3A4 substrate) exposure. Midazolam AUC and Cmax ratios were predicted within 2-fold of the respective observations in seven studies. Simulations of the hepatic and gut CYP3A4 abundance after multiple oral dosing of ritonavir indicated that a 3-day treatment with ritonavir 100 mg twice daily is sufficient to reach maximal CYP3A4 inhibition and subsequent systemic exposure increase of a CYP3A4 substrate, resulting in the reliable estimation of fm,CYP3A4 . The ritonavir model was submitted as part of the new drug application for Kisqali® (ribociclib) and accepted by health authorities.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Modelos Biológicos , Ritonavir/farmacologia , Ritonavir/farmacocinética , Simulação por Computador , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Midazolam/sangue , Midazolam/metabolismo , Ritonavir/sangue
13.
Phytother Res ; 30(11): 1872-1878, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27534594

RESUMO

Praeruptorin A (PA) and B (PB) are two important compounds isolated from Bai-hua Qian-hu and have been reported to exert multiple biochemical and pharmacological activities. The present study aims to determine the inhibition of PA and PB on the activity of important phase II drug-metabolizing enzymes uridine 5'-diphospho-glucuronosyltransferase (UGTs) isoforms. In vitro UGT incubation system was used to determine the inhibition potential of PA and PB on the activity of various UGT isoforms. In silico docking was performed to explain the inhibition difference between PA and PB towards the activity of UGT1A6. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (Ki ) and in vivo exposure level of PA. Praeruptorin A (100 µM) exhibited the strongest inhibition on the activity of UGT1A6 and UGT2B7, with 97.8% and 90.1% activity inhibited by 100 µM of PA, respectively. In silico docking study indicates the significant contribution of hydrogen bond interaction towards the stronger inhibition of PA than PB towards UGT1A6. Praeruptorin A noncompetitively inhibited the activity of UGT1A6 and competitively inhibited the activity of UGT2B7. The inhibition kinetic parameter (Ki ) of PA towards UGT1A6 and UGT2B7 was calculated to be 1.2 and 3.3 µM, respectively. The [I]/Ki value was calculated to be 15.8 and 5.8 for the inhibition of PA on UGT1A6 and UGT2B7, indicating high inhibition potential of PA towards these two UGT isoforms in vivo. Therefore, closely monitoring the interaction between PA and drugs mainly undergoing UGT1A6 or UGT2B7-catalyzed metabolism is very necessary. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cumarínicos/química , Glucuronosiltransferase/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Cumarínicos/farmacologia , Humanos
14.
Yakugaku Zasshi ; 144(7): 775-779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945852

RESUMO

Venetoclax (VEN) is used in patients with acute myeloid leukemia (AML) and is primarily metabolized by CYP3A4, a major drug-metabolizing enzyme. Patients with AML simultaneously administered VEN and CYP3A4 inhibitors require a more appropriate management of drug-drug interactions (DDIs). Here, we report two cases of patients with AML (54-year-old man and 22-year-old woman) administrated VEN and CYP3A4 inhibitors, such as posaconazole, cyclosporine, or danazol. In the first case, we evaluated the appropriateness of timing for adjusting VEN dosage subsequent to the cessation of posaconazole. Consequently, modifying the VEN dosage in conjunction with the cessation of Posaconazole simultaneously may result in elevated plasma VEN levels. In the second case, plasma VEN concentrations were markedly elevated when co-administered with several CYP3A4 inhibitors. Additionally, in vitro assays were conducted for reverse translational studies to analyze CYP3A4 inhibition. CYP3A4 inhibition by combinatorial administration of cyclosporine A and danazol was demonstrated in vitro, which potentially explains the increasing plasma VEN concentrations observed in clinical settings. Although the acquisition of therapeutic effects is a major priority for patients, frequent therapeutic drug monitoring and dosage adjustments considering DDIs would be important factors in chemotherapy.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Interações Medicamentosas , Monitoramento de Medicamentos , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Sulfonamidas/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Masculino , Adulto Jovem , Pessoa de Meia-Idade , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/sangue , Feminino , Citocromo P-450 CYP3A/metabolismo , Ciclosporina/administração & dosagem , Triazóis/administração & dosagem , Antineoplásicos/administração & dosagem
15.
Cancer Chemother Pharmacol ; 93(2): 107-119, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37838624

RESUMO

PURPOSE: Entrectinib (ENT) is a potent c-ros oncogene 1(ROS1) and neurotrophic tyrosine receptor kinase (NTRKA/B/C) inhibitor. To determine the optimum dosage of ENT using ROS1 and NTRKA/B/C occupancy in plasma and cerebrospinal fluid (CSF) in drug-drug interactions (DDIs), physiologically-based pharmacokinetic (PBPK) models for healthy subjects and cancer population were developed for ENT and M5 (active metabolite). METHODS: The PBPK models were built using the modeling parameters of ENT and M5 that were mainly derived from the published paper on the ENT PBPK model, and then validated by the observed pharmacokinetics (PK) in plasma and CSF from healthy subjects and patients. RESULTS: The PBPK model showed that AUC, Cmax, and Ctrough ratios between predictions and observations are within the range of 0.5-2.0, except that the M5 AUC ratio is slightly above 2.0 (2.34). Based on the efficacy (> 75% occupancy for ROS1 and NTRKA/B/C) and safety (AUC < 160 µM·h and Cmax < 8.9 µM), the appropriate dosing regimens were identified. The appropriate dosage is 600 mg once daily (OD) when administered alone, reduced to 200 mg and 400 mg OD with itraconazole and fluconazole, respectively. ENT is not recommended for co-administration with rifampicin or efavirenz, but is permitted with fluvoxamine or dexamethasone. CONCLUSION: The PBPK models can serve as a powerful approach to predict ENT concentration as well as ROS1 and NTRKA/B/C occupancy in plasma and CSF.


Assuntos
Benzamidas , Indazóis , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Humanos , Interações Medicamentosas , Itraconazol/farmacocinética , Modelos Biológicos
16.
Pharmaceutics ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38931859

RESUMO

Carbamazepine (CBZ) is commonly prescribed for epilepsy and frequently used in polypharmacy. However, concerns arise regarding its ability to induce the metabolism of other drugs, including itself, potentially leading to the undertreatment of co-administered drugs. Additionally, CBZ exhibits nonlinear pharmacokinetics (PK), but the root causes have not been fully studied. This study aims to investigate the mechanisms behind CBZ's nonlinear PK and its induction potential on CYP3A4 and CYP2C9 enzymes. To achieve this, we developed and validated a physiologically based pharmacokinetic (PBPK) parent-metabolite model of CBZ and its active metabolite Carbamazepine-10,11-epoxide in GastroPlus®. The model was utilized for Drug-Drug Interaction (DDI) prediction with CYP3A4 and CYP2C9 victim drugs and to further explore the underlying mechanisms behind CBZ's nonlinear PK. The model accurately recapitulated CBZ plasma PK. Good DDI performance was demonstrated by the prediction of CBZ DDIs with quinidine, dolutegravir, phenytoin, and tolbutamide; however, with midazolam, the predicted/observed DDI AUClast ratio was 0.49 (slightly outside of the two-fold range). CBZ's nonlinear PK can be attributed to its nonlinear metabolism caused by autoinduction, as well as nonlinear absorption due to poor solubility. In further applications, the model can help understand DDI potential when CBZ serves as a CYP3A4 and CYP2C9 inducer.

17.
Pharmaceutics ; 16(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39204337

RESUMO

Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug-drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter DDIs is recommended if an investigational product is intestinally absorbed, undergoes renal or hepatic elimination, or is suspected to either be a transporter substrate or perpetrator. However, many of the transporter substrates and inhibitors administered during a DDI study also affect cytochrome P450 (CYP) activity, which can complicate data interpretation. To overcome these challenges, the assessment of endogenous biomarkers can help elucidate the mechanism of complex DDIs when multiple transporters or CYPs may be involved. This perspective article will highlight how creative study designs are currently being utilized to address complex transporter DDIs and the role of physiology-based -pharmacokinetic (PBPK) models can play.

18.
Metabolites ; 13(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37623842

RESUMO

Because of the high research and development cost of new drugs, the long development process of new drugs, and the high failure rate at later stages, combining past drugs has gradually become a more economical and attractive alternative. However, the ensuing problem of drug-drug interactions (DDIs) urgently need to be solved, and combination has attracted a lot of attention from pharmaceutical researchers. At present, DDI is often evaluated and investigated from two perspectives: pharmacodynamics and pharmacokinetics. However, in some special cases, DDI cannot be accurately evaluated from a single perspective. Therefore, this review describes and compares the current DDI evaluation methods based on two aspects: pharmacokinetic interaction and pharmacodynamic interaction. The methods summarized in this paper mainly include probe drug cocktail methods, liver microsome and hepatocyte models, static models, physiologically based pharmacokinetic models, machine learning models, in vivo comparative efficacy studies, and in vitro static and dynamic tests. This review aims to serve as a useful guide for interested researchers to promote more scientific accuracy and clinical practical use of DDI studies.

19.
Front Pharmacol ; 14: 1210579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502215

RESUMO

The COVID-19 pandemic sparked the development of novel anti-viral drugs that have shown to be effective in reducing both fatality and hospitalization rates in patients with elevated risk for COVID-19 related morbidity or mortality. Currently, nirmatrelvir/ritonavir (Paxlovid™) fixed-dose combination is recommended by the World Health Organization for treatment of COVID-19. The ritonavir component is an inhibitor of cytochrome P450 (CYP) 3A, which is used in this combination to achieve needed therapeutic concentrations of nirmatrelvir. Because of the critical pharmacokinetic effect of this mechanism of action for Paxlovid™, co-administration with needed medications that inhibit or induce CYP3A is contraindicated, reflecting concern for interactions with the potential to alter the efficacy or safety of co-administered drugs that are also metabolized by CYP3A. Some herbal medicines are known to interact with drug metabolizing enzymes and transporters, including but not limited to inhibition or induction of CYP3A and P-glycoprotein. As access to these COVID-19 medications has increased in low- and middle-income countries (LMICs), understanding the potential for herb-drug interactions within these regions is important. Many studies have evaluated the utility of herbal medicines for COVID-19 treatments, yet information on potential herb-drug interactions involving Paxlovid™, specifically with herbal medicines commonly used in LMICs, is lacking. This review presents data on regionally-relevant herbal medicine use (particularly those promoted as treatments for COVID-19) and mechanism of action data on herbal medicines to highlight the potential for herbal medicine interaction Herb-drug interaction mediated by ritonavir-boosted antiviral protease inhibitors This work highlights potential areas for future experimental studies and data collection, identifies herbal medicines for inclusion in future listings of regionally diverse potential HDIs and underscores areas for LMIC-focused provider-patient communication. This overview is presented to support governments and health protection entities as they prepare for an increase of availability and use of Paxlovid™.

20.
Chem Biol Interact ; 373: 110400, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773833

RESUMO

Ripretinib, as an oral kinase inhibitor, has been approved to treat advanced gastrointestinal stromal tumors (GIST) and is often used in combination with other drugs to slow disease progression, thus potential drug-drug Interactions (DDIs) and drug-disease interactions (DDZIs) have received much attention. To guide clinical rational drug use, this study assessed the effect of co-administered drugs and diseases on ripretinib exposure. Simcyp® Simulator was used to develop the physiologically-based pharmacokinetic (PBPK) model of ripretinib, which was validated and refined with clinical data. We then examined the impact of several CYP3A4 inhibitors and inducers as well as different diseases on ripretinib exposure using the validated model. In the DDI simulation, moderate CYP3A4 inhibitors and inducers changed the exposure of ripretinib by 1.25-2 fold. In hepatic impairment (HI), the simulation showed that ripretinib's AUC increased by 32%, 100%, and 152% for Child-Pugh A, B, and C classification while Cmax increased by 2%, 10%, and 15%, respectively. In renal impairment (RI), the model-simulated AUC in moderate and severe RIs increased by 27% and 20%. In conclusion, PBPK models demonstrated quantitative prediction of ripretinib's pharmacokinetic changes under varying conditions that might be useful for its rational use.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Hepatopatias , Humanos , Naftiridinas , Interações Medicamentosas , Modelos Biológicos , Citocromo P-450 CYP3A , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA