Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 817-846, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823652

RESUMO

Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.


Assuntos
Carbono-Carbono Liases/metabolismo , Microbioma Gastrointestinal/fisiologia , Ácidos Sulfônicos/metabolismo , Acetiltransferases/química , Acetiltransferases/metabolismo , Alcanossulfonatos/metabolismo , Anaerobiose , Bactérias/metabolismo , Carbono-Carbono Liases/química , Glicina/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Ácido Isetiônico/metabolismo , Microbiota/fisiologia , Taurina/metabolismo
2.
Trends Biochem Sci ; 47(8): 689-698, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35397924

RESUMO

The electron transport chain (ETC) is a major currency converter that exchanges the chemical energy of fuel oxidation to proton motive force and, subsequently, ATP generation, using O2 as a terminal electron acceptor. Discussed herein, two new studies reveal that the mammalian ETC is forked. Hypoxia or H2S exposure promotes the use of fumarate as an alternate terminal electron acceptor. The fumarate/succinate and CoQH2/CoQ redox couples are nearly iso-potential, revealing that complex II is poised for facile reverse electron transfer, which is sensitive to CoQH2 and fumarate concentrations. The gas regulators, H2S and •NO, modulate O2 affinity and/or inhibit the electron transfer rate at complex IV. Their induction under hypoxia suggests a mechanism for how traffic at the ETC fork can be regulated.


Assuntos
Elétrons , Fumaratos , Animais , Transporte de Elétrons , Hipóxia , Mamíferos , Oxirredução
3.
J Biol Chem ; 300(6): 107371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750791

RESUMO

The sulfite-reducing bacterium Bilophila wadsworthia, a common human intestinal pathobiont, is unique in its ability to metabolize a wide variety of sulfonates to generate sulfite as a terminal electron acceptor (TEA). The resulting formation of H2S is implicated in inflammation and colon cancer. l-cysteate, an oxidation product of l-cysteine, is among the sulfonates metabolized by B. wadsworthia, although the enzymes involved remain unknown. Here we report a pathway for l-cysteate dissimilation in B. wadsworthia RZATAU, involving isomerization of l-cysteate to d-cysteate by a cysteate racemase (BwCuyB), followed by cleavage into pyruvate, ammonia and sulfite by a d-cysteate sulfo-lyase (BwCuyA). The strong selectivity of BwCuyA for d-cysteate over l-cysteate was rationalized by protein structural modeling. A homolog of BwCuyA in the marine bacterium Silicibacter pomeroyi (SpCuyA) was previously reported to be a l-cysteate sulfo-lyase, but our experiments confirm that SpCuyA too displays a strong selectivity for d-cysteate. Growth of B. wadsworthia with cysteate as the electron acceptor is accompanied by production of H2S and induction of BwCuyA. Close homologs of BwCuyA and BwCuyB are present in diverse bacteria, including many sulfate- and sulfite-reducing bacteria, suggesting their involvement in cysteate degradation in different biological environments.


Assuntos
Cisteína , Cisteína/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bilophila/metabolismo , Bilophila/enzimologia , Racemases e Epimerases/metabolismo , Oxirredução , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/química , Sulfitos/metabolismo , Humanos
4.
J Biol Chem ; 299(8): 105010, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414148

RESUMO

The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.


Assuntos
Bilophila , Humanos , Alcanossulfonatos/metabolismo , Bilophila/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo , Taurina/metabolismo , Microbioma Gastrointestinal
5.
J Biol Chem ; 299(7): 104839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209822

RESUMO

Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.


Assuntos
Elétrons , Modelos Moleculares , Oxidantes , Complexo de Proteína do Fotossistema II , Benzoquinonas/química , Transporte de Elétrons , Oxidantes/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Quinonas/química , Quinonas/metabolismo , Água/química , Sítios de Ligação , Estrutura Terciária de Proteína , Difração de Raios X , Cianobactérias/química , Cianobactérias/fisiologia
6.
Small ; 20(5): e2305631, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752745

RESUMO

Non-fused electron acceptors have huge advantages in fabricating low-cost organic photovoltaic (OPV) cells. However, morphology control is a challenge as non-fused C─C single bonds bring more molecular conformations. Here, by selecting two typical polymer donors, PBDB-TF and PBQx-TF, the blend morphologies and its impacts on the power conversion efficiencies (PCEs) of non-fused acceptor-based OPV cells are studied. A selenium-containing non-fused acceptor named ASe-5 is designed. The results suggest that PBQx-TF has a lower miscibility with ASe-5 when compared with PBDB-TF. Additionally, the polymer networks may form earlier in the PBQx-TF:ASe-5 blend film due to stronger preaggregation performance, leading to a more obvious phase separation. The PBQx-TF:ASe-5 blend film shows faster charge transfer and suppressed charge recombination. As a result, the PBQx-TF:ASe-5-based device records a good PCE of 14.7% with a higher fill factor (FF) of 0.744, while the PBDB-TF:ASe-5-based device only obtains a moderate PCE of 12.3% with a relatively low FF of 0.662. The work demonstrates that the selection of donors plays a crucial role in controlling the blend morphology and thus improving the PCEs of non-fused acceptor-based OPV cells.

7.
Chemistry ; 30(7): e202303908, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036463

RESUMO

Ion-endohedral-fullerene has attracted growing interest due to the unique electronic and structural characteristics arising from its distinctive ionic nature. Although there has been only one reported ion-encapsulated fullerene, Li+ @C60 , a significant number of fundamental and applied studies have been conducted, making a substantial impact not only in chemistry and physics but also across various interdisciplinary research fields. Nevertheless, studies on ion-endohedral fullerenes are still in their infancy due to the limitations in variety, and hence, it remains an open question how the size and symmetry of fullerene, as well as the motion and position of the encapsulated ion, affect their physical/chemical properties. Herein, we report the synthesis of lithium-ion-endohedral [70]fullerene (Li+ @C70 X- , X=PF6 - and TFSI- ), a novel ionic endohedral fullerene. X-ray crystallography confirmed the encapsulation of Li+ by C70 cage as well as its ion-pair structure stabilized by external TFSI- counter anion. The encapsulated Li+ drastically lowered the orbital energy of the C70 cage by Coulomb interactions but did not affect the orbital energy gap and degeneracy. DFT studies were also performed, which supported the experimentally observed electronic effects caused by the encapsulated Li+ .

8.
Environ Res ; 245: 118013, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141915

RESUMO

Due to the molecular complexity of dissolving organic matter (DOM), the vertical molecular distribution of riparian soil DOM (especially dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP)) in different land use types and their relationship with the bacterial community is still unclear. This study analyzed the spectral characteristics of riparian soil DOM from 0 to 100 cm in wild grassland, agricultural land, and bare land. The molecular distribution of DOM was revealed through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and the specific relationship between DOM and bacterial community composition (BCC) was evaluated. The results showed that the DOM in the upper soil layer (0-40 cm) was mainly composed of recalcitrant macromolecular organics, while that in the lower layer (40-100 cm) was labile small molecular organics. In agricultural land, the total storage of DOM was lower than that in wild grassland, but with a higher abundance of recalcitrant organic carbon (lignin, etc.). At the same time, the bacterial community in agricultural land is shifting towards copiotrophs. In addition, the abundance of labile C degrading genes increases with nitrate as the main electron acceptor. However, sulfates are mainly used as electron acceptors in wild grasslands. Both DOP and DON were dominated by lignin and displayed higher chemical diversity in the upper soil. The bioavailability of DOP in three types of soil is higher than that of DON. DOM-BCC network analysis shows that the recalcitrant DON and DOP molecules in soil are positively correlated with phylum Actinobacteriota in agricultural land. These results emphasize that the DOM molecular characteristics were closely related to the function of the soil bacterial community.


Assuntos
Matéria Orgânica Dissolvida , Solo , Solo/química , Lignina , Nitrogênio/análise , Agricultura , Bactérias/genética
9.
Environ Res ; 248: 118277, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266895

RESUMO

Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO3-) and oxygen (O2) as electron acceptors in MAR on water quality and safety. Notably, NO3-, acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O2. However, a direct comparison between NO3- and O2 remains unexplored. This study assessed risks in MAR effluent induced by NO3- and O2, alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO3- as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O2, primarily due to a decrease in soluble microbial product production. Furthermore, NO3- significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO3- MAR compared to O2. This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO3- influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO3- influence. Thus, NO3- as an electron acceptor in MAR elevates ARG and HBP risks compared to O2, potentially compromising groundwater quality and safety.


Assuntos
Antibacterianos , Água Subterrânea , Humanos , Antibacterianos/farmacologia , Elétrons , Bactérias , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Oxigênio , Água Subterrânea/microbiologia
10.
Angew Chem Int Ed Engl ; 63(1): e202316039, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983686

RESUMO

A pyrene-fused dimerized electron acceptor has been successfully synthesized and subsequently incorporated as the third component in ternary organic solar cells (OSCs). Diverging from the traditional dimerized acceptors with a linear configuration, this novel electron acceptor displays a distinctive "butterfly-like" structure, comprising two Y-acceptors as wings fused with a pyrene-based backbone. The extended π-conjugated backbone and the electron-donating nature of pyrene enable the new acceptor to show low solubility, elevated glass transition temperature (Tg ), and low-lying frontier energy levels. Consequently, the new dimerized acceptor seamlessly integrates as the third component into ternary OSCs, enhancing electron transporting properties, reducing non-radiative voltage loss, and elevating open-circuit voltage. These merits have enabled the ternary OSCs to show an exceptional efficiency of 19.07%, a marked improvement compared to the 17.6% attained in binary OSCs. More importantly, the high Tg exhibited by the pyrene-fused electron acceptor helps to stabilize the morphology of the photoactive layer thermal-treated at 70 °C, retaining 88.7% efficiency over 600 hours. For comparison, binary OSCs experience a decline to 73.7% efficiency after the same duration. These results indicate that the "butterfly-like" design and the incorporation of a pyrene unit is a promising strategy in the development of dimerized electron acceptors for OSCs.

11.
Biodegradation ; 34(3): 283-300, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808270

RESUMO

The potential of a native digestate microbial community for 1,4-dioxane (DX) biodegradation was evaluated under low dissolved oxygen (DO) concentrations (1-3 mg/L) under different conditions in terms of electron acceptors, co-substrates, co-contaminants and temperature. Complete DX biodegradation (detection limit of 0.01 mg/L) of initial 25 mg/L was achieved in 119 days under low DO concentrations, while complete biodegradation happened faster at 91 and 77 days, respectively in nitrate-amended and aerated conditions. In addition, conducting biodegradation at 30 ˚C showed that the time required for complete DX biodegradation in unamended flasks reduced from 119 days in ambient condition (20-25 °C) to 84 days. Oxalic acid, which is a common metabolite of DX biodegradation was identified in the flasks under different treatments including unamended, nitrate-amended and aerated conditions. Furthermore, transition of the microbial community was monitored during the DX biodegradation period. While the overall richness and diversity of the microbial community decreased, several families of known DX-degrading bacteria such as Pseudonocardiaceae, Xanthobacteraceae and Chitinophagaceae were able to maintain and grow in different electron-accepting conditions. The results suggested that DX biodegradation under low DO concentrations, where no external aeration was provided, is possible by the digestate microbial community, which can be helpful to the ongoing research for DX bioremediation and natural attenuation.


Assuntos
Microbiota , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Nitratos , Elétrons
12.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958580

RESUMO

In this study, a series of electron donor (-NH2, -NMe2 and -tBu) and electron-withdrawing substituents (-F, -CN and -NO2) were used to tune the nucleophilicity or electrophilicity of a series of square planar Ni2+, Pd2+ and Pt2+ malonate coordination complexes towards a pentafluoroiodobenzene and a pyridine molecule. In addition, Bader's theory of atoms in molecules (AIM), noncovalent interaction plot (NCIplot), molecular electrostatic potential (MEP) surface and natural bond orbital (NBO) analyses at the PBE0-D3/def2-TZVP level of theory were carried out to characterize and discriminate the role of the metal atom in the noncovalent complexes studied herein. We hope that the results reported herein may serve to expand the current knowledge regarding these metals in the fields of crystal engineering and supramolecular chemistry.


Assuntos
Elétrons , Modelos Moleculares , Ligação de Hidrogênio , Eletricidade Estática
13.
Angew Chem Int Ed Engl ; 62(46): e202312740, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37739928

RESUMO

We disclose π-expanded pyracylenes and their cationic species comprising 7-membered rings. The compounds were synthesized by stepwise oxidative cyclodehydrogenation to monitor the effect of successive cyclization on the structural and optoelectronic properties. As shown by X-ray crystallography, the complete cyclization leads to a boat-shaped scaffold featuring negative curvature provided by the 7-membered ring. The embedded tropone unit enabled the convenient generation of a stabilized tropylium cation, showing bathochromically shifted absorption bands reaching into the near-infrared region beyond 1000 nm. The altered structural features, supported by theoretical calculations, point towards the positively charged 7-membered ring having aromatic character.

14.
Angew Chem Int Ed Engl ; 62(26): e202304256, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37186137

RESUMO

Although the incorporation of 2D perovskite into 3D perovskite can greatly enhance intrinsic stability, power conversion efficiency (PCE) of 2D/3D perovskite is still inferior to its 3D counterpart due to poor carrier transport kinetics resulted from the quantum and dielectric confinement of 2D component. To overcome this issue, the electron acceptor molecule 1,2,4,5-tetracyanobenzene (TCNB) was introduced to trigger intermolecular π-π interaction in 2D perovskite along with the electronic doping of 2D/3D perovskite to improve charge transfer efficiency. By virtue of high electron affinity, TCNB can undergo electron transfer reaction and subsequently establish π-π interaction with 1-naphthalenemethylammonium (NMA) cations, greatly strengthening lattice rigidity and reducing exciton binding energy. Transmission electron microscopy results demonstrate that 2D phases are mainly distributed at grain boundaries, reducing defect density and weakening nonradiative recombination. Meanwhile, the p-type doping of perovskite by TCNB optimizes energy level alignment at perovskite/hole transport layer interface. Consequently, PCE of champion device is significantly boosted to 24.01 %. The unencapsulated device retains an initial efficiency close to 94 % after exposure to ambient environment for over 1000 h. This work paves a novel path for designing new mixed-dimensional perovskite solar cells with high PCE and superior stability.


Assuntos
Elétrons , Oxidantes , Cinética
15.
Chemistry ; 28(24): e202104598, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35212059

RESUMO

Polycyclic aromatic hydrocarbon (PAH) structures with suitable electron-withdrawing groups are useful building blocks for developing optical and electron-transporting materials. Here, we report the application of a double benzannulation process to the syntheses of PAH diimides with enlarged π-frameworks featuring a central anthracene moiety. The preparations are realized by copper-catalyzed [4+2] cycloaddition of ethynyl-substituted aromatic dicarboximide to 2,5-bis(phenylethynyl)terephthalaldehyde, followed by intramolecular photocyclization or direct arylation via Heck cross coupling. A central symmetric benzo[1,2-k:4,5-k']-bis(fluoranthene)-3,4,12,13-tetracarboxyl diimide (BFDI) is acquired, with the single crystal structure revealing its completely planar polycyclic skeleton. Such a shape-persistent PAH expectedly exhibits a tendency to stack face-to-face and forms J-aggregates. Moreover, BFDI can be difunctionalized site-selectively at the reactive 9 and 10 positions of the anthracene unit and then applied to prepare conjugated polymers. When coupled with 1,4-diketopyrrolo[3,4-c]-pyrrole (DPP) via thiophene and dithiophene linkers, two polymers with significantly broadened absorption bands extended to the near-infrared regime are obtained, evidencing the effective π-conjugative extension ability of BFDI unit.

16.
Chemistry ; 28(47): e202201554, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35652474

RESUMO

We disclose a successive π-expansion of pyracylene towards boat-shaped polycyclic scaffolds. The unique structural features of the resulting compounds were revealed by X-ray crystallographic analysis. Depending on the extent of π-expansion the compounds display intense bathochromically shifted absorption bands in their UV/Vis spectra and are prone to several redox events as documented by cyclic voltammetry. The experimental observations are in line with the computational studies based on density functional theory, suggesting progressive narrowing of the HOMO-LUMO gap and distinct evolution of the electronic structure and aromaticity.

17.
Environ Sci Technol ; 56(23): 17462-17470, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36342198

RESUMO

Mountain floodplain soils often show spatiotemporal variations in redox conditions that arise due to changing hydrology and resulting biogeochemistry. Under oxygen-depleted conditions, solid phase terminal electron acceptors (TEAs) can be used in anaerobic respiration. However, it remains unclear to what degree the redox properties of solid phases limit respiration rates and hence organic matter degradation. Here, we assess such limitations in soils collected across a gradient in native redox states from the Slate River floodplain (Colorado, U.S.A.). We incubated soils under anoxic conditions and quantified CO2 production and microbial Fe(III) reduction, the main microbial metabolic pathway, as well as the reactivity of whole-soil solid phase TEAs toward mediated electrochemical reduction. Fe(III) reduction occurred together with CO2 production in native oxic soils, while neither Fe(II) nor CO2 production was observed in native anoxic soils. Initial CO2 production rates increased with increasing TEA redox reactivity toward mediated electrochemical reduction across all soil depths. Low TEA redox reactivity appears to be caused by elevated Fe(II) concentrations rather than crystallinity of Fe(III) phases. Our findings illustrate that the buildup of Fe(II) in systems with long residence times limits the thermodynamic viability of dissimilatory Fe(III) reduction and thereby limits the mineralization of organic carbon.


Assuntos
Microbiologia do Solo , Solo , Anaerobiose , Dióxido de Carbono/metabolismo , Elétrons , Compostos Ferrosos , Ferro/química , Oxirredução , Oxigênio/química , Solo/química , Inundações
18.
Environ Res ; 215(Pt 3): 114420, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167116

RESUMO

Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.


Assuntos
Poluentes Ambientais , Microbiota , Anaerobiose , Benzeno/química , Derivados de Benzeno , Biodegradação Ambiental , Elétrons , Ferro , Metano , Nitratos/química , Oxidantes , Solo , Sulfatos/química , Tolueno/química , Xilenos
19.
Biol Pharm Bull ; 45(6): 798-802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35650106

RESUMO

Redox-active quinones generate reactive oxygen species (ROS) through their redox cycling with electron donors. Hydrogen peroxide (H2O2) causes S-oxidation of proteins and is associated with activation of the redox signaling pathway and/or toxicity (Chem. Res. Toxicol., 30, 2017, Kumagai et al.). In the present study, we developed a convenient assay based on a combination of an enzyme-linked immunosorbent assay and a biotin-PEAC5-maleimide assay and used it to determine protein S-oxidation by ROS during redox cycling of 9,10-phenanthrenequinone (9,10-PQ) and pyrroloquinoline quinone (PQQ). S-Oxidation of proteins in a mouse liver supernatant was detected during reaction of 9,10-PQ or PQQ with electron donors such as dithiothreitol or reduced nicotinamide adenine dinucleotide phosphate (NADPH), whereas cellular protein oxidation was not observed in the absence of electron donors. These results suggest that the developed assay is useful for the detection of S-oxidation of proteins.


Assuntos
Peróxido de Hidrogênio , Quinonas , Animais , Camundongos , NADP/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
20.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500565

RESUMO

The synthesis of some novel donor-acceptor and acceptor-donor-acceptor systems containing a 2,2'-bi[3,2-b]thienothiophene donor block and various electron-accepting units is described alongside their photophysical properties studied using electrochemistry, optical spectroscopy and theoretical calculations. The obtained results show that the energy levels can be modulated by changing the strength of the acceptor unit. Among the three investigated end-groups, 1,1-dicyanomethylene-3-indanone exhibited the largest bathochromic shift and the lowest band gap suggesting the strongest electron-withdrawing character. Moreover, the emissive properties of the investigated systems vary greatly with the nature of the terminal group and are generally lower compared to their precursor aldehyde derivatives.


Assuntos
Aldeídos , Elétrons , Eletroquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA