RESUMO
Climate change presents a challenge for plants to acclimate their water relations under changing environmental conditions, and may increase the risks of hydraulic failure under stress. In this study, maize plants were acclimated to two different CO2 concentrations ([CO2]; 400 ppm and 700 ppm) while under either water stress (WS) or soil salinity (SS) treatments, and their growth and hydraulic traits were examined in detail. Both WS and SS inhibited growth and had significant impacts on hydraulic traits. In particular, the water potential at 50% loss of stem hydraulic conductance (P50) decreased by 1 MPa in both treatments at 400 ppm. When subjected to elevated [CO2], the plants under both WS and SS showed improved growth by 7-23%. Elevated [CO2] also significantly increased xylem vulnerability (measured as loss of conductivity with decreasing xylem pressure), resulting in smaller hydraulic safety margins. According to the plant desiccation model, the critical desiccation degree (time×vapor pressure deficit) that the plants could tolerate under drought was reduced by 43-64% under elevated [CO2]. In addition, sensitivity analysis showed that P50 was the most important trait in determining the critical desiccation degree. Thus, our results demonstrated that whilst elevated [CO2] benefited plant growth under WS or SS, it also interfered with hydraulic acclimation, thereby potentially placing the plants at a higher risk of hydraulic failure and increased mortality.
Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/farmacologia , Solo , Salinidade , Desenvolvimento Vegetal , Xilema , Secas , Folhas de PlantaRESUMO
Rice seedlings were exposed to two CO2 concentrations (400 ± 20 and 800 ± 20 µmol mol-1) and three PbNO3 concentrations (0, 50 and 100 µmol L-1) for 10 days to explore the regulatory mechanisms of elevated CO2 for Pb stress resistance. Electrical conductivity, MDA content, SOD, POD, CAT activities and metabolomics changes were studied. Results showed that: Pb stress damaged cell membrane system, electrical conductivity and MDA content increased 49.34 % and 73.27 %, respectively, and some antioxidant enzymes activities increased. Sugar, polyol, amino acid metabolism and fatty acid ß-oxidation were all enhanced to improve osmotic adjustments, maintain cell membrane stability, supply energy, nitrogen assimilates and antioxidant capacity; Under composite treatments, cell membrane damage was reduced, activities of protective enzymes increased compared with only Pb stress, POD activity increased the most (49.14 %) under severe Pb composite treatment. High CO2 caused the enhance of cells antioxidant capacity, TCA cycle intermediate products contents and fatty acid desaturation under mild Pb stress. Many sugars, polyols and amino acids contents were increased as osmotic regulatory substances by high CO2 under severe Pb stress; Secondary metabolites played an important role under Pb stress and composite treatments. The object of this study is to provide a possible molecular mechanism of rice response to Pb stress under high CO2 in the future.
Assuntos
Oryza , Plântula , Plântula/metabolismo , Antioxidantes/metabolismo , Oryza/metabolismo , Dióxido de Carbono/metabolismo , Chumbo/metabolismo , Ácidos Graxos/metabolismoRESUMO
Forage crops are used worldwide as key feed sources for dairy systems. However, their productivity and quality are limited due to intensified drought events, elevated carbon dioxide (CO2), and their interaction with climate change, with consequences for the security of animal husbandry and the agricultural economy. Although studies have quantified the impacts of such stresses on forage growth, these impacts have been less systematically investigated in a global context due to differences among various forage groups, regional microclimates, and environmental factors. Herein we employed nine forage growth-related variables involving three perspectives, i.e., photosynthetic parameters, production, and quality, from research articles published between 1990 and 2021 via a meta-analysis. A linear mixed-effect model was then used to explore the quantitative relationship between these factors in a restricted dataset. Decreasing trends in all four photosynthetic parameters were detected across different eco-geographical regions with increasing drought stress. The maximum decrease in DMY occurred in the Mediterranean, with 52.8% under drought conditions. Globally, eCO2 significantly increased photosynthetic rate (Pn) and instantaneous water use efficiency (WUEi) by 40.8% and 62.1%, respectively, which also had positive effects on forage dry matter yield (DMY) (+25.1%), especially for forage in Northern Europe. However, this stress would significantly decrease forage quality by decreasing crude protein (CP) (-19.7%) and nitrogen content (N content) (-13.5%). These negative impacts would be aggravated under the co-occurrence of drought and eCO2, including a significant increase in WUEi (+111.1%) and a decrease in DMY (-12.3%). Gramineae showed a more sensitive response to drought stress in photosynthetic parameters and DMY than Leguminosae, but the latter exhibited a better response in photosynthetic parameters and production under eCO2. Our analysis provides a consensus concerning how the growth parameters of forage have changed under environmental stresses.
Assuntos
Dióxido de Carbono , Secas , Animais , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Água , Poaceae/metabolismoRESUMO
The effects of individual climatic factors on crops are well documented, whereas the interaction of such factors in combination has received less attention. The frequency of salinity and waterlogging stress is increasing with climate change, accompanied by elevated CO2 concentration (e[CO2]). This study explored how these three variables interacted and affected two tomato genotypes. Cultivated and wild tomato (Solanum lycopersicum and Solanum pimpinellifolium) were grown at ambient [CO2] and e[CO2], and subjected to salinity, waterlogging, and combined stress. Leaf photosynthesis, chlorophyll fluorescence, quenching analysis, pigment, and plant growth were analyzed. The response of tomatoes depended on both genotype and stress type. In cultivated tomato, photosynthesis was inhibited by salinity and combined stress, whereas in wild tomato, both salinity and waterlogging stress, alone and in combination, decreased photosynthesis. e[CO2] increased photosynthesis and biomass of cultivated tomato under salinity and combined stress compared with ambient [CO2]. Differences between tomato genotypes in response to individual and combined stress were observed in key photosynthetic and growth parameters. Hierarchical clustering and principal component analysis revealed genetic variations of tomatoes responding to the three climatic factors. Understanding the interacting effects of salinity and waterlogging with e[CO2] in tomato will facilitate improvement of crop resilience to climate change.
Assuntos
Solanum lycopersicum , Solanum , Dióxido de Carbono/farmacologia , Clorofila , Solanum lycopersicum/genética , Fotossíntese , Folhas de Planta , Salinidade , Solanum/genéticaRESUMO
The frequency of waterlogging episodes has increased due to unpredictable and intense rainfalls. However, less is known about waterlogging memory and its interaction with other climate change events, such as elevated CO2 concentration (e[CO2]). This study investigated the combined effects of e[CO2] and two rounds of waterlogging stress on the growth of cultivated tomato (Solanum lycopersicum) and wild tomato (S. pimpinellifolium). The aim is to elucidate the interaction between genotypes and environmental factors and thereby to improve crop resilience to climate change. We found that two rounds of treatments appeared to induce different acclimation strategies of the two tomato genotypes. S. pimpinellifolium responded more negatively to the first-time waterlogging than S. lycopersicum, as indicated by decreased photosynthesis and biomass loss. Nevertheless, the two genotypes respond similarly when waterlogging stress recurred, showing that they could maintain a higher leaf photosynthesis compared to single stress, especially for the wild genotype. This showed that waterlogging priming played a positive role in stress memory in both tomato genotypes. Multivariate analysis showed that waterlogging played a dominant role when combined with [CO2] for both the cultivated and wild tomato genotypes. This work will benefit agricultural production strategies by pinpointing the positive effects of e[CO2] and waterlogging memory.
Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Dióxido de Carbono , Solanum/genética , Fotossíntese , Análise MultivariadaRESUMO
The present study reports profiling of the elevated carbon dioxide (CO2) concentration responsive global transcriptome in chickpea, along with a combinatorial approach for exploring interlinks between physiological and transcriptional changes, important for the climate change scenario. Various physiological parameters were recorded in two chickpea cultivars (JG 11 and KAK 2) grown in open top chambers under ambient [380 parts per million (ppm)] and two stressed/elevated CO2 concentrations (550 and 700 ppm), at different stages of plant growth. The elevated CO2 concentrations altered shoot and root length, nodulation (number of nodules), total chlorophyll content and nitrogen balance index, significantly. RNA-Seq from 12 tissues representing vegetative and reproductive growth stages of both cultivars under ambient and elevated CO2 concentrations identified 18,644 differentially expressed genes including 9,687 transcription factors (TF). The differential regulations in genes, gene networks and quantitative real-time polymerase chain reaction (qRT-PCR) -derived expression dynamics of stress-responsive TFs were observed in both cultivars studied. A total of 138 pathways, mainly involved in sugar/starch metabolism, chlorophyll and secondary metabolites biosynthesis, deciphered the crosstalk operating behind the responses of chickpea to elevated CO2 concentration.
Assuntos
Dióxido de Carbono/farmacologia , Cicer/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cicer/efeitos dos fármacos , Cicer/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
BACKGROUND: Extreme weather events are predicted to increase, such as combined heat and drought. The CO2 concentration ([CO2]) is predicted to approximately double by 2100. We aim to explore how tomato physiology, especially photosynthesis, is affected by combined heat and drought under elevated [CO2] (e [CO2]). RESULTS: Two genotypes, 'OuBei' ('OB', Solanum lycopersicum) and 'LA2093' (S. pimpinellifolium) were grown at a [CO2] (atmospheric [CO2], 400 ppm) and e [CO2] (800 ppm), respectively. The 27-days-old seedlings were treated at 1) a [CO2], 2) a [CO2] + combined stress, 3) e [CO2] and 4) e [CO2] + combined stress, followed by recovery. The PN (net photosynthetic rate) increased at e [CO2] as compared with a [CO2] and combined stress inhibited the PN. Combined stress decreased the Fv/Fm (maximum quantum efficiency of photosystem II) of 'OB' at e [CO2] and that of 'LA2093' in regardless of [CO2]. Genotypic difference was observed in the e [CO2] effect on the gas exchange, carbohydrate accumulation, pigment content and dry matter accumulation. CONCLUSIONS: Short-term combined stress caused reversible damage on tomato while the e [CO2] alleviated the damage on photosynthesis. However, the e [CO2] cannot be always assumed have positive effects on plant growth during stress due to increased water consumption. This study provided insights into the physiological effects of e [CO2] on tomato growth under combined stress and contributed to tomato breeding and management under climate change.
Assuntos
Fotossíntese , Solanum lycopersicum/metabolismo , Dióxido de Carbono/metabolismo , Desidratação , Resposta ao Choque Térmico , Solanum lycopersicum/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Plântula/metabolismo , Plântula/fisiologiaRESUMO
The atmospheric CO2 concentration (a[CO2]) is increasing at an unprecedented pace. Exogenous melatonin plays positive roles in the response of plants to abiotic stresses, including drought and cold. The effect of elevated CO2 concentration (e[CO2]) accompanied by exogenous melatonin on plants under drought and cold stresses remains unknown. Here, tomato plants were grown under a[CO2] and e[CO2], with half of the plants pre-treated with melatonin. The plants were subsequently treated with drought stress followed by cold stress. The results showed that a decreased net photosynthetic rate (PN) was aggravated by a prolonged water deficit. The PN was partially restored after recovery from drought but stayed low under a successive cold stress. Starch content was downregulated by drought but upregulated by cold. The e[CO2] enhanced PN of the plants under non-stressed conditions, and moderate drought and recovery but not severe drought. Stomatal conductance (gs) and the transpiration rate (E) was less inhibited by drought under e[CO2] than under a[CO2]. Tomato grown under e[CO2] had better leaf cooling than under a[CO2] when subjected to drought. Moreover, melatonin enhanced PN during recovery from drought and cold stress, and enhanced biomass accumulation in tomato under e[CO2]. The chlorophyll a content in plants treated with melatonin was higher than in non-treated plants under e[CO2] during cold stress. Our findings will improve the knowledge on plant responses to abiotic stresses in a future [CO2]-rich environment accompanied by exogenous melatonin.
Assuntos
Resposta ao Choque Frio/genética , Fotossíntese/genética , Folhas de Planta/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Clorofila A/genética , Secas , Humanos , Solanum lycopersicum/genética , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Água/metabolismoRESUMO
BACKGROUND: Plant photosynthesis can be improved by elevated CO2 concentration (eCO2). In vitro growth under CO2 enriched environment can lead to greater biomass accumulation than the conventional in micropropagation. However, little is know about how eCO2 promotes transformation of grape plantlets in vitro from heterotrophic to autotrophic. In addition, how photosynthesis-related genes and their proteins are expressed under eCO2 and the mechanisms of how eCO2 regulates RbcS, Rca and their proteins have not been reported. RESULTS: Grape (Vitis vinifera L. cv. 'Pinot Noir') plantlets in vitro were cultured with 2% sucrose designated as control (CK), with eCO2 (1000 µmol·mol- 1) as C0, with both 2% sucrose and eCO2 as Cs. Here, transcriptomic and proteomic profiles associated with photosynthesis and growth in leaves of V. vinifera at different CO2 concentration were analyzed. A total of 1814 genes (465 up-regulated and 1349 down-regulated) and 172 proteins (80 up-regulated and 97 down-regulated) were significantly differentially expressed in eCO2 compared to CK. Photosynthesis-antenna, photosynthesis and metabolism pathways were enriched based on GO and KEGG. Simultaneously, 9, 6 and 48 proteins were involved in the three pathways, respectively. The leaf area, plantlet height, qP, ΦPSII and ETR increased under eCO2, whereas Fv/Fm and NPQ decreased. Changes of these physiological indexes are related to the function of DEPs. After combined analysis of proteomic and transcriptomic, the results make clear that eCO2 have different effects on gene transcription and translation. RbcS was not correlated with its mRNA level, suggesting that the change in the amount of RbcS is regulated at their transcript levels by eCO2. However, Rca was negatively correlated with its mRNA level, it is suggested that the change in the amount of its corresponding protein is regulated at their translation levels by eCO2. CONCLUSIONS: Transcriptomic, proteomic and physiological analysis were used to evaluate eCO2 effects on photosynthesis. The eCO2 triggered the RbcS and Rca up-regulated, thus promoting photosynthesis and then advancing transformation of grape plantlets from heterotrophic to autotrophic. This research will helpful to understand the influence of eCO2 on plant growth and promote reveal the mechanism of plant transformation from heterotrophic to autotrophic.
Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas In Vitro , Proteômica , TranscriptomaRESUMO
Elevated atmospheric CO2 concentrations ([CO2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO2 responses within models should be prioritized.
Assuntos
Dióxido de Carbono , Produção Agrícola , Carbono , Modelos Teóricos , Nitrogênio , FotossínteseRESUMO
Stomata control the cycling of water and carbon between plants and the atmosphere; however, no consistent conclusions have been drawn regarding the response of stomatal frequency to climate change. Here, we conducted a meta-analysis of 1854 globally obtained data series to determine the response of stomatal frequency to climate change, which including four plant life forms (over 900 species), at altitudes ranging from 0 to 4500 m and over a time span of more than one hundred thousand years. Stomatal frequency decreased with increasing CO2 concentration and increased with elevated temperature and drought stress; it was also dependent on the species and experimental conditions. The response of stomatal frequency to climate change showed a trade-off between stomatal control strategies and environmental factors, such as the CO2 concentration, temperature, and soil water availability. Moreover, threshold effects of elevated CO2 and temperature on stomatal frequency were detected, indicating that the response of stomatal density to increasing CO2 concentration will decrease over the next few years. The results also suggested that the stomatal index may be more reliable than stomatal density for determination of the historic CO2 concentration. Our findings indicate that the contrasting responses of stomata to climate change bring a considerable challenge in predicting future water and carbon cycles.
Assuntos
Carbono/metabolismo , Mudança Climática , Estômatos de Plantas/fisiologia , Ciclo Hidrológico , Dióxido de Carbono , Folhas de Planta , ÁguaRESUMO
Elevated CO2 concentrations may inhibit photosynthesis due to nitrogen deficiency, but legumes may be able to overcome this limitation and continue to grow. Our study confirms this conjecture well. First, we placed the two-year-old potted saplings of Ormosia hosiei (O. hosiei) (a leguminous tree species) in the open-top chamber (OTC) with three CO2 concentrations of 400 (CK), 600 (E1), and 800 µmol·mol-1 (E2) to simulate the elevated CO2 concentration environment. After 146 days, the light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), and dark respiration rate (Rd) of O. hosiei were increased under increasing CO2 concentration and obtain the maximum ribulose diphosphate (RuBP) carboxylation rate (Vc max) and RuBP regenerated photosynthetic electron transfer rate (Jmax) were also significantly increased under E2 treatment (P < 0.05). This results in a significant increase of the maximum assimilation rate (Amax) under elevated CO2 concentrations. Sucrose phosphate synthase (SPS) activity in sucrose metabolism increased in the leaves, more soluble sugars, starches, and sucrose was produced, but sucrose content only in leaves increased at E2, and more carbon flows to the roots. The activity of the NH4+ assimilating enzymes glutamine synthetase (GS), glutamate synthetase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of O. hosiei increases under elevated CO2 concentrations to promote nitrogen synthesis that reduces the content of ammonium nitrogen and increases the content of nitrate nitrogen. In addition, under E1 conditions, sucrose synthase (SS), direction of synthesis activity was highest and sucrose invertase (INV) activity was lowest, this means that the balance of C and N metabolism is maintained. While under E2 conditions SS activity decreased and INV activity increased, this increased C/N and nitrogen use efficiency. So, the elevated CO2 concentration promotes the accumulation of O. hosiei biomass, especially in the aboveground part, but did not have a significant effect on the accumulation of root biomass. This means that O. hosiei is able to cope under the elevated CO2 concentration without showing photosynthetic adaptation during the experimental period.
Assuntos
Biomassa , Dióxido de Carbono , Carbono , Nitrogênio , Fotossíntese , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Glucosiltransferases/metabolismo , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismoRESUMO
The atmospheric [CO2] and the frequency and intensity of extreme weather events such as drought are increased, leading to uncertainty to soybean production. Elevated [CO2] (eCO2) partially mitigates the adverse effects of drought stress on crop growth and photosynthetic performance, but the mitigative mechanism is not well understood. In this study, soybean seedlings under drought stress simulated by PEG-6000 were grown in climate chambers with different [CO2] (400 µmol mol-1 and 700 µmol mol-1). The changes in anatomical structure, wax content, photosynthesis, and antioxidant enzyme were investigated by the analysis of physiology and transcriptome sequencing (RNA-seq). The results showed that eCO2 increased the thickness of mesophyll cells and decreased the thickness of epidermal cells accompanied by reduced stomatal conductance, thus reducing water loss in soybean grown under drought stress. Meanwhile, eCO2 up-regulated genes related to wax anabolism, thus producing more epidermal wax. Under drought stress, eCO2 increased net photosynthetic rate (PN), ribulose-1,5-bisphosphate carboxylase/oxygenase activity, and alerted the gene expressions in photosynthesis. The increased sucrose synthesis and decreased sucrose decomposition contributed to the progressive increase in the soluble saccharide contents under drought stress with or without eCO2. In addition, eCO2 increased the expressions of genes associated with peroxidase (POD) and proline (Pro), thus enhancing POD activity and Pro content and improving the drought resistance in soybean. Taken together, these findings deepen our understanding of the effects of eCO2 on alleviating drought stress in soybean and provide potential target genes for the genetic improvement of drought tolerance in soybean.
Assuntos
Dióxido de Carbono , Resistência à Seca , Dióxido de Carbono/metabolismo , Glycine max/genética , Folhas de Planta/fisiologia , Fotossíntese , Estresse Oxidativo , Secas , Antioxidantes/metabolismo , Sacarose/farmacologiaRESUMO
Plants' response to single environmental changes can be highly distinct from the response to multiple changes. The effects of a single environmental factor on wheat growth have been well documented. However, the interactive influences of multiple factors on different wheat genotypes need further investigation. Here, treatments of three important growth factors, namely water regime, temperature, and CO2 concentration ([CO2]), were applied to compare the response of two wheat genotypes with different heat sensitivities. The temperature response curves showed that both genotypes showed more variations at elevated [CO2] (e[CO2]) than ambient [CO2] (a[CO2]) when the plants were treated under different water regimes and temperatures. This corresponded to the results of water use efficiency at the leaf level. At e[CO2], heat-tolerant 'Gladius' showed a higher net photosynthetic rate (Pn), while heat-susceptible 'Paragon' had a lower Pn at reduced water, as compared with full water availability. The temperature optimum for photosynthesis in wheat was increased when the growth temperature was high, while the leaf carbon/nitrogen was increased via a reduced water regime. Generally, water regime, temperature and [CO2] have significant interactive effects on both wheat genotypes. Two wheat genotypes showed different physiological responses to different combinations of environmental factors. Our investigation concerning the interactions of multi-environmental factors on wheat will benefit the future wheat climate-response study.
RESUMO
Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.
Assuntos
Dióxido de Carbono , Regulação da Expressão Gênica de Plantas , Glycine max , Proteínas de Plantas , Nodulação , Plantas Geneticamente Modificadas , Glycine max/genética , Glycine max/microbiologia , Glycine max/metabolismo , Dióxido de Carbono/metabolismo , Nodulação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Perfilação da Expressão GênicaRESUMO
This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.
RESUMO
BACKGROUND: Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS: The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION: This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Beauveria , Dióxido de Carbono , Endófitos , Larva , Mariposas , Controle Biológico de Vetores , Zea mays , Zea mays/microbiologia , Animais , Dióxido de Carbono/metabolismo , Mariposas/microbiologia , Mariposas/crescimento & desenvolvimento , Endófitos/fisiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Beauveria/fisiologiaRESUMO
The continuous accumulation of Cd has long-lasting detrimental effects on plant growth and food safety. Although elevated CO2 concentration (EC) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of elevated CO2 concentration and its mechanisms in the possible alleviation of Cd toxicity in soybean are limited. Here, we used physiological and biochemical methods together with transcriptomic comparison to explore the effects of EC on Cd-stressed soybean. Under Cd stress, EC significantly increased the weight of roots and leaves, promoted the accumulations of proline, soluble sugars, and flavonoid. In addition, the enhancement of GSH activity and GST gene expressions promoted Cd detoxification. These defensive mechanisms reduced the contents of Cd2+, MDA, and H2O2 in soybean leaves. The up-regulation of genes encoding phytochelatin synthase, MTPs, NRAMP, and vacuoles protein storage might play vital roles in the transportation and compartmentalization process of Cd. The MAPK and some transcription factors such as bHLH, AP2/ERF, and WRKY showed changed expressions and might be engaged in mediation of stress response. These findings provide a boarder view on the regulatory mechanism of EC on Cd stress and provide numerous potential target genes for future engineering of Cd-tolerant cultivars in soybean breeding programs under climate changes scenarios.
Assuntos
Cádmio , Glycine max , Dióxido de Carbono , Peróxido de Hidrogênio , Perfilação da Expressão GênicaRESUMO
Introduction: Soil phosphorus (P) deficiency limits plant growth and productivity in grassland ecosystems and may moderate the growth-promoting effects of "carbon dioxide (CO2) fertilization effect". Methods: To evaluate the interactive effects of these two factors on the growth and physiology for annual ryegrass (Lolium multiflorum Lam.), plants were grown in controlled growth chambers with a range of P supply (0.004, 0.012, 0.02, 0.06, 0.1 and 0.5 mM) under two levels of CO2 (400 and 800 µmol mol-1, respectively). Results: Elevated [CO2] dramatically increased the aboveground biomass and net photosynthetic rates of annual ryegrass by 14.5% and 25.3% under sufficient P supply (0.5 mM), respectively, whereas decreased the belowground biomass and net photosynthetic rates under lower P supply of P0.004, P0.02, and P0.06. Two-way ANOVA results showed that CO2 × P (p < 0.001) significantly affected stomatal traits, leaf photosynthesis and biomass. The stimulation of growth and photosynthesis by elevated CO2 concentration (e[CO2]) was reduced or highly suppressed, indicating that the sensitivity of annual ryegrass to P deficiency was enhanced under e[CO2]. Discussion: These results indicated that P limitation may offset the positive effects of e[CO2] on plant growth by altering stomatal traits, leaf photochemical processes and biochemical composition in annual ryegrass.
RESUMO
The occurrence and development of antibiotic resistance genes (ARGs) in pathogens poses serious threatens to global health. Agricultural soils provide reservoirs for pathogens and ARGs, closely related to public health and food safety. Especially, metals stress provides more long-standing selection pressure for ARGs, and climate change is a "threat multiplier" for the spread of ARGs. However, little is known about the impact of metals contamination on pathogens and ARGs in agricultural soils and their sensitivity to ongoing climate changes. To fill this gap, a pot experiment was conducted in open-top chambers (OTCs) to investigate the influence of mercury (Hg) contamination on the distribution of soil pathogens and ARGs under ambient and elevated CO2 concentration. Results showed that the relative abundance of common plant and human pathogens increased significantly in Hg-contaminated soil under two CO2 concentrations. Hg contamination was a positive effector of the activation of efflux pumps and offensive virulence factors (adhere and secretion system) under two CO2 levels. Activation of efflux pumps caused by Hg contamination might contribute to changes of virulence or fitness of certain pathogens. Overall, our study emphasizes the critical role of efflux pumps as an intersection of antibiotic resistance and pathogen's virulence under Hg stress.