Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39205130

RESUMO

The implementation of Industry 4.0 has integrated manufacturing, electronics, and engineering materials, leading to the creation of smart parts (SPs) that provide information on production system conditions. However, SP development faces challenges due to limitations in manufacturing processes and integrating electronic components. This systematic review synthesizes scientific articles on SP fabrication using additive manufacturing (AM), identifying the advantages and disadvantages of AM techniques in SP production and distinguishing between SPs and smart spare parts (SSPs). The methodology involves establishing a reference framework, formulating SP-related questions, and applying inclusion criteria and keywords, initially resulting in 1603 articles. After applying exclusion criteria, 70 articles remained. The results show that while SP development is advancing, widespread application of AM-manufactured SP is recent. SPs can anticipate production system failures, minimize design artifacts, and reduce manufacturing costs. Furthermore, the review highlights that SSPs, a subcategory of SPs, primarily differs by replacing conventional critical parts in the industry, offering enhanced functionality and reliability in industrial applications. The study concludes that continued research and development in this field is essential for further advancements and broader adoption of these technologies.

2.
Mikrochim Acta ; 190(8): 286, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417989

RESUMO

The application of copper-based nanoparticles synthesized via green synthesis and their integration with a wearable electrode is reported for designing a flexible catalytic electrode on a glove for onsite electroanalysis of paraquat. A copper precursor and an orange extract from Citrus reticulata are used to synthesize an economical electrocatalytic material for supporting the selective and sensitive detection of paraquat. The electrode yields multidimensional fingerprints due to two redox couples in a square wave voltammogram, corresponding to the presence of paraquat. The developed lab-on-a-finger sensor provides the fast electroanalysis of paraquat within 10 s, covering a wide range from 0.50 to 1000 µM, with a low detection limit down to 0.31 µM and high selectivity. It is also possible to use this sensor at a fast scan rate as high as 6 V s-1 (< 0.5 s for a scan). This wearable glove sensor allows the user to directly touch and analyze samples, such as surfaces of vegetables and fruits, to screen the contamination. It is envisioned that these glove-embedded sensors can be applied to the on-site analysis of food contamination and environments.


Assuntos
Nanopartículas , Dispositivos Eletrônicos Vestíveis , Cobre , Paraquat/análise , Eletrodos
3.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837175

RESUMO

Reliable measurements in structural health monitoring mean for the instrumentation to be set in perfect reproducible conditions. The solution described in this study consists of printing the sensors directly on the parts to be controlled. This method solves the reproducibility issue, limits human error, and can be used in confined or hazardous environments. This work was limited to eddy current testing, but the settings and conclusions are transposable to any non-destructive testing methods (ultrasounds, etc.). The first salve of tests was run to establish the best dielectric and conductive ink combination. The Dupont ink combination gave the best performances. Then, the dispenser- and the screen-printing methods were carried out to print flat spiral coils on flexible substrates. The resulting sensors were compared to flex-printed circuit boards (PCB-flex) using copper for the electrical circuit. The conductive ink methods were revealed to be just as efficient. The last stage of this work consisted of printing sensors on solid parts. For this, 20-turn spiral coils were printed on 3 mm thick stainless-steel plates. The permanent sensors showed good sensibility in the same range as the portative ones, demonstrating the method's feasibility.

4.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336470

RESUMO

Lead Zirconate Titanate (PZT) sensors have become popular in structural health monitoring (SHM) using the electromechanical impedance (EMI) technique for damage identification. The vibrations generated during the casting process in concrete structures substantially impact the conductance signature's (real part of admittance) magnitude and sensitivity. The concept of smart sensing units (SSU) is presented, composed of a PZT patch, an adhesive layer, and a steel plate. It is embedded in the concrete structure to study the impact of damage since it has high sensitivity to detect any structural changes, resulting in a high electrical conductance signature. The conductance signatures are obtained from the EMI technique at the damage state in the 10-500 kHz high-frequency range. The wave propagation technique proposes implementing the novel embedded SSUs to detect damage in the host structure. The numerical simulation is carried out with COMSOL multiphysics, and the received voltage signal is compared between the damaged and undamaged concrete beam with the applied actuation signal. A five-cycle sine burst modulated by a Hanning window is employed as the transient excitation signal. For numerical investigation, six cases are explored to better understand how the wave travels when a structural discontinuity is accounted for. The changes in the received signal during actuator-receiver mode in the damage state of the host structure are quantified using time of flight (TOF). Furthermore, the numerical studies are carried out by combining the EMI-WP technique, which implies synchronous activation of EMI-based measurements and wave stimulation. The fundamental idea is to implement EMI-WP to improve the effectiveness of SSU patches in detecting both near-field and far-field damage in structures. One SSU is used as an EMI admittance sensor for local damage identification. Meanwhile, the same EMI admittance sensor is used to acquire elastic waves generated by another SSU to monitor damages outside the EMI admittance sensor's sensing area. Finally, the experimental validation is carried out to verify the proposed methodology. The results show that combining both techniques is an effective SHM method for detecting damage in concrete structures.

5.
Sensors (Basel) ; 21(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920787

RESUMO

The use of wearable sensors for health monitoring is rapidly growing. Over the past decade, wearable technology has gained much attention from the tech industry for commercial reasons and the interest of researchers and clinicians for reasons related to its potential benefit on patients' health. Wearable devices use advanced and specialized sensors able to monitor not only activity parameters, such as heart rate or step count, but also physiological parameters, such as heart electrical activity or blood pressure. Electrocardiogram (ECG) monitoring is becoming one of the most attractive health-related features of modern smartwatches, and, because cardiovascular disease (CVD) is one of the leading causes of death globally, the use of a smartwatch to monitor patients could greatly impact the disease outcomes on health care systems. Commercial wearable devices are able to record just single-lead ECG using a couple of metallic contact dry electrodes. This kind of measurement can be used only for arrhythmia diagnosis. For the diagnosis of other cardiac disorders, additional ECG leads are required. In this study, we characterized an electronic interface to be used with multiple contactless capacitive electrodes in order to develop a wearable ECG device able to perform several lead measurements. We verified the ability of the electronic interface to amplify differential biopotentials and to reject common-mode signals produced by electromagnetic interference (EMI). We developed a portable device based on the studied electronic interface that represents a prototype system for further developments. We evaluated the performances of the developed device. The signal-to-noise ratio of the output signal is favorable, and all the features needed for a clinical evaluation (P waves, QRS complexes and T waves) are clearly readable.


Assuntos
Perna (Membro) , Dispositivos Eletrônicos Vestíveis , Arritmias Cardíacas , Eletrocardiografia , Eletrodos , Humanos
6.
Sensors (Basel) ; 20(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575659

RESUMO

Measurement of the internal stress and strain distributions within soft materials is necessary in the field of skin contact safety. However, conventional interactive force sensors cannot efficiently obtain or estimate these distributions. Herein, a shear strain sensor system consisting of distributed built-in piezoelectric polyvinylidene fluoride (PVDF) polymer films was developed to measure the internal shear strain field of a soft material. A shear strain sensing model was mathematically established, based on the piezoelectricity and mechanical behavior of a bending cantilever beam, to explain the sensing principle. An experiment in three-dimensional measurement of the shear strain distribution within an artificial skin was designed and conducted to assess the sensitivity of the sensing model. This sensor system could visualize the shear strain field and was sensitive to different contact conditions. The measurement results agreed well with the results of numerical simulation of the substrate, based on contact mechanics. The proposed sensor system was confirmed to provide a new sensing method for the field of shape analysis. The sensor system can be applied to develop sufficiently sensitive electronic skin and can significantly contribute to skin damage analysis and skin contact safety assessment.

7.
Sensors (Basel) ; 19(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717817

RESUMO

In this paper, a magnetic microwire-based sensor array embedded under the pavement is proposed as a weighing system at customs ports of entry. This sensor is made of a cementitious material suitable for embedding within the core of concrete structures prior to curing. The objective of this research is to verify the feasibility of stress monitoring for concrete materials using an array of cement-based stress/strain sensors that have been developed using the magnetic sensing property of an embedded microwire in a cement-based composite. Test results for microwire-based sensors and gauge sensors are compared. The strain sensitivity and their linearity are investigated through experimental testing under compressive loadings. Sensors made of these materials can be designed to satisfy specific needs and reduce costs in the production of sensor aggregates with improved coupling performance, thus avoiding any disturbance to the stress state.

8.
Sensors (Basel) ; 18(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469335

RESUMO

Concrete compressive strength is an important parameter of material properties for assessing seismic performance of reinforced concrete (RC) structures, which has a certain level of uncertainty due to its inherent variability. In this paper, the method of concrete strength validation of finite element model using smart aggregate (SA)-based stress monitoring is proposed. The FE model was established using Open System for Earthquake Engineering Simulation (OpenSEES) platform. The concrete strengths obtained from the material test, peak stress of SA, and estimated concrete strength based on SA stress were employed in FE models. The lateral displacement monitored by Liner variable differential transformer and vertical axial load monitored by load cell in the experiment are applied in the model. By comparing the global response (i.e., lateral reaction force and hysteretic loop), local response (i.e., concrete stress, rebar strain, and cross-section moment) and corresponding root-mean-square error obtained from experiment and numerical analysis, the capabilities of validation of FE model using SA-based stress monitoring method were demonstrated.

9.
Sensors (Basel) ; 18(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543765

RESUMO

This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution.

10.
Sensors (Basel) ; 18(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213029

RESUMO

In recent years, weigh-in-motion systems based on embedded sensor networks have received a lot of attention. However, how to improve the accuracy of multi-sensor weigh-in-motion (WIM) systems while keeping costs low remains a challenge. In this paper, a numerical simulation method is presented to analyze the relationship between sensor location and the accuracy of static weight estimation. The finite element model of a WIM system is developed, which consists of three parts: a pavement model, a moving load model and two types of sensor models. Analysis of simulation results shows that the ability of sensing dynamic load is closely related to the installation depth of sensors and pavement material. Moreover, the distance between the moving wheel and sensors has a great impact on estimating performance. Gaussian curve fitting could be used to reduce weighing error within a limited range. Our work suggests that much more attention should be paid to the design of the sensor layout of a WIM system.

11.
Sensors (Basel) ; 18(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347856

RESUMO

This paper proposes a novel and accurate method for estimating the flight coefficient of a flying disc typically operating at a high rotation rate. In particular, the proposed method introduces a new algorithm that takes advantage of magnetic data measured by a miniaturized sensor module onboard a conventional disc. Since the geomagnetic field measured by the magnetic sensor mounted on the rotating body yields a general sinusoidal waveform, a frequency domain analysis is employed in computing the rotational rate. Furthermore, on the basis of the estimated rate during a whole flight period, a yaw damping derivative coefficient is derived, which enables an accurate prediction of the disc's flight trajectory. For performance verification, both a reference rotation table test and a real flight test are performed, for which a miniaturized embedded sensor module is designed and manufactured for an onboard flight test. A reference rotation test validates the performance of the proposed method. Subsequently, a flight test, in which a simulator-based trajectory is compared with the true reference trajectory, verifies that the proposed method better predicts the flight trajectory by incorporating the estimated coefficient.

12.
Sensors (Basel) ; 18(6)2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29882849

RESUMO

Piecewise linear approximation of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear approximation techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear approximation algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the approximation quality compared to other state-of-the-art piecewise linear approximation techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.

13.
Nanomaterials (Basel) ; 13(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133045

RESUMO

The integration of 3D printed sensors into hosting structures has become a growing area of research due to simplified assembly procedures, reduced system complexity, and lower fabrication cost. Embedding 3D printed sensors into structures or bonding the sensors on surfaces are the two techniques for the integration of sensors. This review extensively discusses the fabrication of sensors through different additive manufacturing techniques. Various additive manufacturing techniques dedicated to manufacture sensors as well as their integration techniques during the manufacturing process will be discussed. This review will also discuss the basic sensing mechanisms of integrated sensors and their applications. It has been proven that integrating 3D printed sensors into infrastructures can open new possibilities for research and development in additive manufacturing and sensor materials for smart goods and the Internet of Things.

14.
3D Print Addit Manuf ; 10(6): 1251-1259, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116226

RESUMO

In this article, the multimaterial extrusion (M-MEX) technology is used to fabricate, in a single step, a three-dimensional printed soft electromagnetic (EM) actuator, based on internal channels, filled with soft liquid metal (Galinstan) and equipped with an embedded strain gauge, for the first time. At the state of the art, M-MEX techniques result underexploited for the manufacture of soft EM actuators: only traditional manufacturing approaches are used, resulting in many assembly steps. The main features of this work are as follows: (1) one shot fabrication, (2) smart structure equipped with sensor unit, and (3) scalability. The actuator was tested in conjunction with a commercial magnet, showing a bending angle of 22.4° (when activated at 4A), a relative error of 0.7%, and a very high sensor sensitivity of 49.7 Two more examples, showing all the potentialities of the proposed approach, are presented: a jumping frog-inspired soft robot and a dual independent two-finger actuator. This article aims to push the role of extrusion-based additive manufacturing for the fabrication of EM soft robots: several advantages such as portability, no cooling systems, fast responses, and noise reduction can be achieved by exploiting the proposed actuation system compared to the traditional and widespread actuation mechanisms (shape memory polymers, shape memory alloys, pneumatic actuation, and cable-driven actuation).

15.
Nanomicro Lett ; 15(1): 27, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36586015

RESUMO

Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things (IoT). However, some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing. Herein, we propose a self-powered and highly sensitive tribo-label-sensor (TLS) for accurate label identification, positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer. The sensing mechanism, device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment. As the results, TLS delivers 6 times higher signal magnitude than traditional one. Moreover, TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness. This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.

16.
Materials (Basel) ; 15(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35329734

RESUMO

Rollpave pavement, as a rollable prefabricated asphalt pavement technology, can effectively reduce the overall road closure time required for pavement construction and maintenance. Sensors can be integrated into Rollpave pavement, thereby avoiding sensor damage that may otherwise result from high temperatures and compactive forces during the rolling process, as well as pavement structural damage resulting from cutting and drilling. However, the embedment of sensors into Rollpave pavement still presents certain challenges, namely poor interfacial synergy between the embedded sensor and the asphalt mixture. To solve this problem, three-point bending tests and dynamic response FEM simulations were used to optimize the embedded sensor's packaging. The influence of sensor embedment on Rollpave pavement under different working conditions was analyzed. Results of these analyses show that low temperature and the epoxy resin negatively affect the bending performance of specimens, and that packaging with cylindrical shape, flat design, and consisting of a material with modulus similar to that of the asphalt mixture should be preferred. This study is conducive to improve the intellectual level and service life of road infrastructure.

17.
Sensors (Basel) ; 11(10): 9549-59, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163711

RESUMO

A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Halogênios/química , Raios Infravermelhos , Fibras Ópticas , Prata/química , Temperatura , Calibragem , Desenho de Equipamento , Reprodutibilidade dos Testes , Água/química
18.
J Mech Behav Biomed Mater ; 115: 104301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401065

RESUMO

The re-infection rate of total knee arthroplasty (TKA) after two stage revision (15%) remains high as it can be challenging to determine whether the infection has been fully cleared between the first and second stage procedures. Temporary embedded sensor systems could be a potential solution to indicate whether the infection has been cleared. In this study a telemetric sensor system to integrate with a bone cement spacer and measure knee joint temperature was designed and evaluated. The sensor package precision, accuracy, hysteresis, and thermal equilibrium were empirically determined. Cadaveric testing was performed with the sensor package implanted inside the femoral notch alongside a pre-formed femoral and tibial bone cement spacer. The limb was tested though 30,000 cycles at 0.5 Hz under a 500 N load. Accuracy and precision of the sensing package were found to be ±0.24 °C and 0.09 °C respectively with negligible hysteresis. Thermal insulation caused by the implant itself was found to produce a thermal time constant of 263 ± 5 s, resulting in a 17 min rise time. Memory capacity enabled data logging every 20 s for a 6 week period before necessitating data transfer. Bluetooth was suitable for data transmission while the package was implanted. Following cyclic loading of the cadaveric specimen, imaging and debridement revealed no issues related to mechanical integrity of the bone cement spacer or encapsulated sensor package. While additional validation is required before use in patients, the concept of temporary embedded sensing technology to aid management of infection treatments is promising.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Infecções Relacionadas à Prótese , Antibacterianos , Cimentos Ósseos , Humanos , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular , Reoperação , Estudos Retrospectivos , Resultado do Tratamento
19.
Biosens Bioelectron ; 190: 113443, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171820

RESUMO

Wearable sensing gloves and sensory feedback devices that record and enhance the sensations of the hand are used in healthcare, prosthetics, robotics, and virtual reality. Recent technological advancements in soft actuators, flexible bioelectronics, and wireless data acquisition systems have enabled the development of ergonomic, lightweight, and low-cost wearable devices. This review article includes the most up-to-date materials, sensors, actuators, and system-packaging technologies to develop wearable sensing gloves and sensory feedback devices. Furthermore, this review contemplates the use of wearable sensing gloves and sensory feedback devices together to advance their capabilities as assistive devices for people with prostheses and sensory impaired limbs. This review is divided into two sections: one detailing the technologies used to develop strain, pressure, and temperature sensors integrated with a multifunctional wearable sensing glove, and the other reviewing the devices and methods used for wearable sensory displays. We discuss the limitations of the current methods and technologies along with the future direction of the field. Overall, this paper presents an all-inclusive review of the technologies used to develop wearable sensing gloves and sensory feedback devices.


Assuntos
Técnicas Biossensoriais , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Atenção à Saúde , Retroalimentação Sensorial , Humanos , Próteses e Implantes
20.
Stud Health Technol Inform ; 249: 69-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29866958

RESUMO

The demography is changing towards older people, and the challenge to provide an appropriate care is well known. Sensor systems, combined with IT solutions are recognized as one of the major tools to handle this situation. Embedded Sensor Systems for Health (ESS-H) is a research profile at Mälardalen University in Sweden, focusing on embedded sensor systems for health technology applications. The research addresses several important issues: to provide sensor systems for health monitoring at home, to provide sensor systems for health monitoring at work, to provide safe and secure infrastructure and software testing methods for physiological data management. The user perspective is important in order to solve real problems and to develop systems that are easy and intuitive to use. One of the overall aims is to enable health trend monitoring in home environments, thus being able to detect early deterioration of a patient. Sensor systems, signal processing algorithms, and decision support algorithms have been developed. Work on development of safe and secure infrastructure and software testing methods are important for an embedded sensor system aimed for health monitoring, both in home and in work applications. Patient data must be sent and received in a safe and secure manner, also fulfilling the integrity criteria.


Assuntos
Tecnologia Biomédica , Monitorização Fisiológica/instrumentação , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos , Medicina de Precisão , Software , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA