Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(6): e2205012, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36398653

RESUMO

The fluid-filled cystic cavity sealed by a dense scar developed following traumatic spinal cord injury (SCI) has been a major obstacle to neural regeneration and functional recovery. Here the transected lesion is bridged using a functional self-assembling peptide (F-SAP) hydrogel loaded with membrane-permeable intracellular sigma peptide (ISP) and intracellular LAR peptide (ILP), targeted at perturbing chondroitin sulfate proteoglycan (CSPG) inhibitory signaling. As compared to F-SAP hydrogel loaded with chondroitinase ABC, the F-SAP+ISP/ILP promotes a beneficial anti-inflammatory response via manipulation of microglia/macrophages infiltration and assembly of extracellular matrix (ECM) molecules into fibrotic matrix rather than scarring tissues. The remodeled ECM creates a permissive environment that supports axon regrowth and the formation of synaptic connections with neurons derived from endogenous neural stem cells. The remodeled networks contribute to functional recovery, as demonstrated by improved hind limb movements and electrophysiological properties. This work proposes a unique mechanism that ECM remodeling induced by CSPG-manipulation-based anti-inflammation can construct a permissive environment for neural regeneration, and shed light on the advancement of manipulation of cascading cellular and molecular events potential for endogenous repair of SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Proteoglicanas de Sulfatos de Condroitina , Neurônios/fisiologia , Axônios , Cicatriz
2.
Mol Pharm ; 18(8): 3171-3180, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279974

RESUMO

Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.


Assuntos
Anexina A1/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Bandagens , Diabetes Mellitus Experimental/complicações , Proteínas Relacionadas à Folistatina/administração & dosagem , Peptídeos/administração & dosagem , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Ferida Cirúrgica/complicações , Ferida Cirúrgica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/tratamento farmacológico , Células 3T3 , Animais , Materiais Biocompatíveis/administração & dosagem , Biopolímeros/química , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Células HaCaT , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Masculino , Teste de Materiais/métodos , Camundongos , Nanofibras/química , Ratos , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento , Infecção dos Ferimentos/microbiologia
3.
Osteoarthritis Cartilage ; 27(1): 41-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243946

RESUMO

Intervertebral disc (IVD) degeneration is frequently associated with Low back pain (LBP), which can severely reduce the quality of human life and cause enormous economic loss. However, there is a lack of long-lasting and effective therapies for IVD degeneration at present. Recently, stem cell based tissue engineering techniques have provided novel and promising treatment for the repair of degenerative IVDs. Numerous studies showed that stem/progenitor cells exist naturally in IVDs and could migrate from their niche to the IVD to maintain the quantity of nucleus pulposus (NP) cells. Unfortunately, these endogenous repair processes cannot prevent IVD degeneration as effectively as expected. Therefore, theoretical basis for regeneration of the NP in situ can be obtained from studying the mechanisms of endogenous repair failure during IVD degeneration. Although there have been few researches to study the mechanism of cell death and migration of stem/progenitor cells in IVD so far, studies demonstrated that the major inducing factors (compression and hypoxia) of IVD degeneration could decrease the number of NP cells by regulating apoptosis, autophagy, and necroptosis, and the particular chemokines and their receptors played a vital role in the migration of mesenchymal stem cells (MSCs). These studies provide a clue for revealing the mechanisms of endogenous repair failure during IVD degeneration. This article reviewed the current research situation and progress of the mechanisms through which IVD stem/progenitor cells failed to repair IVD tissues during IVD degeneration. Such studies provide an innovative research direction for endogenous repair and a new potential treatment strategy for IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral/terapia , Transplante de Células-Tronco/métodos , Apoptose/fisiologia , Autofagia/fisiologia , Movimento Celular/fisiologia , Humanos , Degeneração do Disco Intervertebral/patologia , Células-Tronco Mesenquimais/fisiologia , Necroptose/fisiologia , Núcleo Pulposo/patologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Falha de Tratamento
4.
BMC Musculoskelet Disord ; 18(1): 242, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583105

RESUMO

BACKGROUND: Eliminating the symptoms during treatment of intervertebral disc degeneration (IVDD) is only a temporary solution that does not cure the underlying cause. A biological method to treat this disorder may be possible by the newly discovered nucleus pulposus derived stem cells (NPDCs). However, the uncertain characteristics and potential of NPDCs calls for a comprehensive study. METHODS: In the present study, nucleus pulposus samples were obtained from 5 patients with IVDD undergoing discectomy procedure and NPDCs were harvested using fluorescence activated cell sorting (FACS) by the co-expression of GD2+ and Tie2+. After in vitro expansion, the properties of NPDCs were compared with those of bone marrow mesenchyme stem cells (BMSCs) from the same subjects. RESULTS: NPDCs performed similar properties in cell colony-forming ability, cell proliferation rate, cell cycle and stem cell gene expression similar to those of BMSCs. In addition, NPDCs could be differentiated into osteoblasts, adipocytes, and chondrocytes, and are found to be superior in chondrogenesis but inferior in adipocyte differentiation. CONCLUSIONS: NPDCs derived from the degenerated intervertebral disc still keep the regeneration ability similar to BMSCs. Besides, the superior capacity in chondrogenesis may provide a promising cell candidate for cell-based regenerative medicine and tissue engineering in IVDD.


Assuntos
Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/fisiologia , Núcleo Pulposo/fisiologia , Regeneração/fisiologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Disco Intervertebral/patologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Núcleo Pulposo/patologia , Núcleo Pulposo/transplante
5.
Adv Exp Med Biol ; 854: 557-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427459

RESUMO

The retinal pigment epithelium (RPE) is a pigmented cellular monolayer that supports photoreceptor cells located in the overlying neural retina. The RPE is critical for vision and its dysfunction results in numerous pathologies, several with limited available disease-altering strategies. Regeneration of the retina from RPE is robust in lower vertebrates, but is not normally exhibited in mammals. We recently found that a subpopulation of human RPE cells can be stimulated in culture to generate multipotent self-renewing cells-the RPE stem cell (RPESC). RPESC can be expanded to generate RPE progeny that are a potential source for cell replacement therapy. Alternatively, RPESC can produce mesenchymal progeny which serve as a disease model of epiretinal membrane formation. Yet another potential application of RPESCs is activation within the eye to awaken dormant endogenous repair.


Assuntos
Diferenciação Celular , Proliferação de Células , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia , Animais , Técnicas de Cultura de Células , Linhagem da Célula , Células Cultivadas , Humanos , Células-Tronco Multipotentes/citologia , Transplante de Células-Tronco/métodos
6.
Adv Mater ; 36(1): e2302686, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37665792

RESUMO

The stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity. It is highly desirable to selectively recruit the stem cells but block the inflammation. In this work, SDF-1α-encapsulated Puerarin (PUE) hydrogel (SDF-1α@PUE) is capable of enhancing endogenous stem cell homing and simultaneously polarizing the recruited monocyte/macrophages into a repairing phenotype. Flow cytometry analysis of the treated heart tissue shows that endogenous bone marrow mesenchymal stem cells, hemopoietic stem cells, and immune cells are recruited while SDF-1α@PUE efficiently polarizes the recruited monocytes/macrophages into the M2 type. These macrophages influence the preservation of connexin 43 (Cx43) expression which modulates intercellular coupling and improves electrical conduction. Furthermore, by taking advantage of the improved "soil", the recruited stem cells mediate an improved cardiac function by preventing deterioration, promoting neovascular architecture, and reducing infarct size. These findings demonstrate a promising therapeutic platform for MI that not only facilitates heart regeneration but also reduces the risk of cardiac arrhythmias.


Assuntos
Quimiocina CXCL12 , Infarto do Miocárdio , Humanos , Quimiocina CXCL12/metabolismo , Hidrogéis , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Inflamação
7.
BMC Methods ; 1(1): 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872952

RESUMO

Background: Functional evaluation of molecules that are predicted to promote stem cell mediated endogenous repair often requires in vivo transplant studies that are low throughput and hinder the rate of discovery. To offer greater throughput for functional validation studies, we miniaturized, simplified and expanded the functionality of a previously developed muscle endogenous repair (MEndR) in vitro assay that was shown to capture significant events of in vivo muscle endogenous repair. Methods: The mini-MEndR assay consists of miniaturized cellulose scaffolds designed to fit in 96-well plates, the pores of which are infiltrated with human myoblasts encapsulated in a fibrin-based hydrogel to form engineered skeletal muscle tissues. Pre-adsorbing thrombin to the cellulose scaffolds facilitates in situ tissue polymerization, a critical modification that enables new users to rapidly acquire assay expertise. Following the generation of the 3D myotube template, muscle stem cells (MuSCs), enriched from digested mouse skeletal muscle tissue using an improved magnetic-activated cell sorting protocol, are engrafted within the engineered template. Murine MuSCs are fluorescently labeled, enabling co-evaluation of human and mouse Pax7+ cell responses to drug treatments. A regenerative milieu is introduced by injuring the muscle tissue with a myotoxin to initiate endogenous repair "in a dish". Phenotypic data is collected at endpoints with a high-content imaging system and is analyzed using ImageJ-based image analysis pipelines. Results: The miniaturized format and modified manufacturing protocol cuts reagent costs in half and hands-on seeding time ~ threefold, while the image analysis pipelines save 40 h of labour. By evaluating multiple commercially available human primary myoblast lines in 2D and 3D culture, we establish quality assurance metrics for cell line selection that standardizes myotube template quality. In vivo outcomes (enhanced muscle production and Pax7+ cell expansion) to a known modulator of MuSC mediated repair (p38/ß MAPK inhibition) are recapitulated in the miniaturized culture assay, but only in the presence of stem cells and the regenerative milieu. Discussion: The miniaturized predictive assay offers a simple, scaled platform to co-investigate human and mouse skeletal muscle endogenous repair molecular modulators, and thus is a promising strategy to accelerate the muscle endogenous repair discovery pipeline. Supplementary Information: The online version contains supplementary material available at 10.1186/s44330-024-00005-4.

8.
Adv Mater ; 34(12): e2109194, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34932833

RESUMO

Granular hydrogels have emerged as a new class of injectable and porous biomaterials that improve integration with host tissue when compared to solid hydrogels. Granular hydrogels are typically prepared using spherical particles and this study considers whether particle shape (i.e., isotropic spheres vs anisotropic rods) influences granular hydrogel properties and cellular invasion. Simulations predict that anisotropic rods influence pore shape and interconnectivity, as well as bead transport through granular assemblies. Photo-cross-linkable norbornene-modified hyaluronic acid is used to produce spherical and rod-shaped particles using microfluidic droplet generators and formed into shear-thinning and self-healing granular hydrogels, with particle shape influencing mechanics and injectability. Rod-shaped particles form granular hydrogels that have anisotropic and interconnected pores, with pore size and number influenced by particle shape and degree of packing. Robust in vitro sprouting of endothelial cells from embedded cellular spheroids is observed with rod-shaped particles, including higher sprouting densities and sprout lengths when compared to hydrogels with spherical particles. Cell and vessel invasion into granular hydrogels when injected subcutaneously in vivo are significantly greater with rod-shaped particles, whereas a gradient of cellularity is observed with spherical particles. Overall, this work demonstrates potentially superior functional properties of granular hydrogels with rod-shaped particles for tissue repair.


Assuntos
Células Endoteliais , Hidrogéis , Materiais Biocompatíveis/farmacologia , Ácido Hialurônico , Porosidade
9.
Neural Regen Res ; 17(11): 2351-2354, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35535870

RESUMO

Although there is ample evidence that central nervous system progenitor pools respond to traumatic brain injury, the reported effects are variable and likely contribute to both recovery as well as pathophysiology. Through a better understanding of the diverse progenitor populations in the adult brain and their niche-specific reactions to traumatic insult, treatments can be tailored to enhance the benefits and dampen the deleterious effects of this response. This review provides an overview of endogenous precursors, the associated effects on cognitive recovery, and the potential of exogenous cell therapeutics to modulate these endogenous repair mechanisms. Beyond the hippocampal dentate gyrus and subventricular zone of the lateral ventricles, more recently identified sites of adult neurogenesis, the meninges, as well as circumventricular organs, are also discussed as targets for endogenous repair. Importantly, this review highlights that progenitor proliferation alone is no longer a meaningful outcome and studies must strive to better characterize precursor spatial localization, transcriptional profile, morphology, and functional synaptic integration. With improved insight and a more targeted approach, the stimulation of endogenous neurogenesis remains a promising strategy for recovery following traumatic brain injury.

10.
Int J Nanomedicine ; 17: 2079-2096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592099

RESUMO

Introduction: Intervertebral disc (IVD) degeneration (IDD) is one of the most widespread musculoskeletal diseases worldwide and remains an intractable clinical challenge. Currently, regenerative strategies based on biomaterials and biological factors to facilitate IVD repair have been widely explored. However, the harsh microenvironment, such as increased ROS and acidity, of the degenerative region impedes the efficiency of IVD repair. Here, an intelligent biodegradable nanoplatform using hollow manganese dioxide (H-MnO2) was developed to modulate the degenerative microenvironment and release transforming growth factor beta-3 (TGF-ß3), which may achieve good long-term therapeutic effects on needle puncture-induced IDD. Methods: Surface morphology and elemental analysis of the MnO2 nanoparticles (NPs) were performed by transmission electron microscopy and an energy-dispersive X-ray spectroscopy detector system, respectively. The biological effects of MnO2 loaded with TGF-ß3 (TGF-ß3/MnO2) on nucleus pulposus cells (NPCs) were assessed via cytoskeleton staining, EdU staining, qPCR and immunofluorescence. The efficacy of TGF-ß3/MnO2 on needle puncture-induced IDD was further examined using MRI and histopathological and immunohistochemical staining. Results: The MnO2 NPs had a spherical morphology and hollow structure that dissociated in the setting of a low pH and H2O2 to release loaded TGF-ß3 molecules. In the oxidative stress environment, TGF-ß3/MnO2 was superior to TGF-ß3 and MnO2 NPs in the suppression of H2O2-induced matrix degradation, ROS, and apoptosis in NPCs. When injected into the IVDs of a rat IDD model, TGF-ß3/MnO2 was able to prevent the degeneration and promote self-regeneration. Conclusion: Use of an MnO2 nanoplatform for biological factors release to regulate the IDD microenvironment and promote endogenous repair may be an effective approach for treating IDD.


Assuntos
Degeneração do Disco Intervertebral , Fator de Crescimento Transformador beta3 , Animais , Preparações de Ação Retardada/farmacologia , Peróxido de Hidrogênio , Degeneração do Disco Intervertebral/terapia , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Ratos , Espécies Reativas de Oxigênio , Fator de Crescimento Transformador beta3/farmacologia
11.
J Biomed Mater Res A ; 109(12): 2720-2739, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34041836

RESUMO

Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.


Assuntos
Materiais Biocompatíveis , Músculo Esquelético/crescimento & desenvolvimento , Regeneração/fisiologia , Medicina Regenerativa/métodos , Animais , Materiais Biomiméticos , Biomimética , Humanos , Fatores Imunológicos , Músculo Esquelético/lesões , Engenharia Tecidual
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(5): 636-641, 2021 May 15.
Artigo em Zh | MEDLINE | ID: mdl-33998219

RESUMO

OBJECTIVE: To review the research progress of endogenous repair strategy (ERS) in intervertebral disc (IVD). METHODS: The domestic and foreign literature related to ERS in IVD in recent years was reviewed, and its characteristics, status, and prospect in the future were summarized. RESULTS: The key of ERS in IVD is to improve the vitality of stem/progenitor cells in IVD or promote its migration from stem cell Niche to the tissue that need to repair. These stem/progenitor cells in IVD are derived from nucleus pulposus, annulus fibrosus, and cartilaginous endplate, showing similar biological characteristics to mesenchymal stem cells including the expression of the specific stem/progenitor cell surface markers and gene, and also the capacity of multiple differentiations potential. However, the development, senescence, and degeneration of IVD have consumed these stem/progenitor cells, and the harsh internal microenvironment further impair their biological characteristics, which leads to the failure of endogenous repair in IVD. At present, relevant research mainly focuses on improving the biological characteristics of endogenous stem/progenitor cells, directly supplementing endogenous stem/progenitor cells, biomaterials and small molecule compounds to stimulate the endogenous repair in IVD, so as to improve the effect of endogenous repair. CONCLUSION: At present, ERS has gotten some achievements in the treatment of IVD degeneration, but its related studies are still in the pre-clinical stage. So further studies regarding ERS should be carried out in the future, especially in vivo experiments and clinical transformation.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Núcleo Pulposo , Humanos , Células-Tronco
13.
JOR Spine ; 4(1): e1133, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778407

RESUMO

Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.

14.
Biomater Transl ; 2(4): 343-360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35837417

RESUMO

The development of tissue engineering has led to new strategies for mitigating clinical problems; however, the design of the tissue engineering materials remains a challenge. The limited sources and inadequate function, potential risk of microbial or pathogen contamination, and high cost of cell expansion impair the efficacy and limit the application of exogenous cells in tissue engineering. However, endogenous cells in native tissues have been reported to be capable of spontaneous repair of the damaged tissue. These cells exhibit remarkable plasticity, and thus can differentiate or be reprogrammed to alter their phenotype and function after stimulation. After a comprehensive review, we found that the plasticity of these cells plays a major role in establishing the cell source in the mechanism involved in tissue regeneration. Tissue engineering materials that focus on assisting and promoting the natural self-repair function of endogenous cells may break through the limitations of exogenous seed cells and further expand the applications of tissue engineering materials in tissue repair. This review discusses the effects of endogenous cells, especially stem cells, on injured tissue repairing, and highlights the potential utilisation of endogenous repair in orthopaedic biomaterial constructions for bone, cartilage, and intervertebral disc regeneration.

15.
Neurospine ; 18(2): 261-270, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33494555

RESUMO

Spinal cord injuries (SCIs) pose an immense challenge from a clinical perspective as current treatments and interventions have been found to provide marginal improvements in clinical outcome (with varying degrees of success) particularly in areas of motor and autonomic function. In this review, the pathogenesis of SCI will be described, particularly as it relates to the necroptotic pathway which has been implicated in limiting recovery of SCI via its roles in neuronal cell death, glial scarring, inflammation, and axonal demyelination and degeneration. Major mediators of the necroptotic pathway including receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed-lineage kinase domainlike will be described in detail regarding their role in facilitating necroptosis. Additionally, due to the rapid accumulation of reactive oxygen species and inflammatory markers, the onset of necroptosis can begin within hours following SCI, thus developing therapeutics that readily cross the blood-brain barrier and inhibit necroptosis during these critical periods of inflammation are imperative in preventing irreversible damage. As such, current therapeutic interventions regarding SCI and targeting of the necroptotic pathway will be explored as will discussion of potential future therapeutics that show promise in minimizing long-term or permanent damage to the spinal cord following severe injury.

16.
Brain Res Bull ; 161: 33-42, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387084

RESUMO

Whether GPR17 has the same distribution and repair mechanism in immature white matter with periventricular leukomalacia (PVL) as in the adult brain remains to be determined. This study tried to explore the expression phase and site of GPR17, and to investigate the effect of silencing GPR17 on endogenous repair mechanism of immature white matter with PVL. Ischemic PVL in vivo results showed that GPR17 gene and protein expression increased more in the PVL than in the sham group at 12 h-24 h and 72h to 7 days after PVL. NG2+/GPR17+progenitor cells at 48 h-96 h and O4+/GPR17+precursor cells at 72h to 7d were also significantly increased in the PVL compared to the sham groups. Results in vitro showed that oxygen-glucose deprivation (OGD) also induced more GPR17 gene and protein expression than control at 48 h-72 h. There were more NG2+/GPR17+progenitor cells at 24 h-48 h and O4+/GPR17+precursor cells at 48 h-72 h in the OGD groups, as well. The functional role of GPR17 in the intrinsic repair response to ischemia was tested using GPR17 gene silencing. The progenitor cells and OL precursors in the OGD+GPR17 silencing group were both significantly less than those in the control, OGD and OGD+gene silencing control groups. The apoptotic percentage of cells in OGD+GPR17 silencing group was also much higher. In summary, ischemia-induced GPR17 expression was shown to contribute to glial-derived progenitor cell proliferation and differentiation into OL precursors, which may provide a therapeutic target for immature neonatal white matter injury after ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Córtex Cerebral/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Substância Branca/metabolismo , Animais , Animais Recém-Nascidos , Isquemia Encefálica/patologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
17.
Front Bioeng Biotechnol ; 8: 629088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553131

RESUMO

Intervertebral disk (IVD) degeneration is one of the most common musculoskeletal disease. Current clinical treatment paradigms for IVD degeneration cannot completely restore the structural and biomechanical functions of the IVD. Bio-therapeutic techniques focused on progenitor/stem cells, especially IVD progenitor cells, provide promising options for the treatment of IVD degeneration. Endogenous repair is an important self-repair mechanism in IVD that can allow the IVD to maintain a long-term homeostasis. The progenitor cells within IVD play a significant role in IVD endogenous repair. Improving the adverse microenvironment in degenerative IVD and promoting progenitor cell migration might be important strategies for implementation of the modulation of endogenous repair of IVD. Here, we not only reviewed the research status of treatment of degenerative IVD based on IVD progenitor cells, but also emphasized the concept of endogenous repair of IVD and discussed the potential new research direction of IVD endogenous repair.

18.
Curr Eye Res ; 45(3): 349-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31557060

RESUMO

Retinal degeneration is a leading cause of untreatable blindness in the industrialised world. It is typically irreversible and there are few curative treatments available. The use of stem cells to generate new retinal neurons for transplantation purposes has received significant interest in recent years and is beginning to move towards clinical trials. However, such approaches are likely to be most effective for relatively focal areas of repair. An intriguing complementary approach is endogenous self-repair. Retinal cells from the ciliary marginal zone (CMZ), retinal pigment epithelium (RPE) and Müller glial cells (MG) have all been shown to play a role in retinal repair, typically in lower vertebrates. Among them, MG have received renewed interest, due to their distribution throughout (centre to periphery) the neural retina and their potential to re-acquire a progenitor-like state following retinal injury with the ability to proliferate and generate new neurons. Triggering these innate self-repair mechanisms represents an exciting therapeutic option in treating retinal degeneration. However, these cells behave differently in mammalian and non-mammalian species, with a considerably restricted potential in mammals. In this short review, we look at some of the recent progress made in our understanding of the signalling pathways that underlie MG-mediated regeneration in lower vertebrates, and some of the challenges that have been revealed in our attempts to reactivate this process in the mammalian retina.


Assuntos
Células Ependimogliais/fisiologia , Neuroglia/fisiologia , Regeneração/fisiologia , Degeneração Retiniana/fisiopatologia , Neurônios Retinianos/fisiologia , Animais , Humanos , Degeneração Retiniana/patologia
19.
Semin Arthritis Rheum ; 50(2): 198-208, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31767195

RESUMO

BACKGROUND: Trauma- or osteoarthritis-related cartilage damage resulted in functional decline of joints and heavy burden of public health. Recently, the reparative role of mesenchymal stem/progenitor cells (MSCs) in articular cartilage (AC) reconstruction is drawing more and more attention. OBJECTIVE: To provide a review on (1) the locations and categories of joint-resident MSCs, (2) the regulation of chondrogenic capacities of MSCs, (3) the migratory approaches of MSCs to diseased AC and regulatory mechanisms. METHODS: PubMed and Web of Science were searched for English-language articles related to MSC recruitment and migration for AC repair until June 2019. The presence of various MSCs in or around joints, the potential approaches to diseased AC` and the regenerative capacities of MSCs were reviewed. RESULTS: Various intra- and peri-articular MSCs, with inherent migratory potentials, are present in multiple stem cell niches in or around joints. The recruitment and migration of joint-resident MSCs play crucial roles in endogenous AC repair. Multiple recruiting signals, such as chemokines, growth factors, etc., emerge during the development of AC diseases and participate in the regulation of MSC mobilization. Motivated MSCs could migrate into cartilage lesions and then exert multiple reparative potentials, including extracellular matrix (ECM) reconstruction and microenvironment modulation. CONCLUSION: In general, AC repair based on endogenous MSC recruitment and migration is a feasible strategy, and a promising research field. Furthermore, endogenous AC repair mediated by native MSCs would provide new opportunities to efficient preventative or therapeutic options for AC diseases.


Assuntos
Doenças das Cartilagens/terapia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/terapia , Regeneração , Cartilagem Articular/lesões , Humanos , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco
20.
World J Stem Cells ; 12(4): 266-276, 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32399135

RESUMO

Low back pain has become more prevalent in recent years, causing enormous economic burden for society and government. Common therapies used in clinics including conservative treatment and surgery can only relieve pain. Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis. Recently, the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy. Therefore, we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment. Meanwhile, we also discuss the strategy and perspective of endogenous repair strategy in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA