Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 39: 363-389, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37339679

RESUMO

Every eukaryotic cell contains two distinct multisubunit protein kinase complexes that each contain a TOR (target of rapamycin) protein as the catalytic subunit. These ensembles, designated TORC1 and TORC2, serve as nutrient and stress sensors, signal integrators, and regulators of cell growth and homeostasis, but they differ in their composition, localization, and function. TORC1, activated on the cytosolic surface of the vacuole (or, in mammalian cells, on the cytosolic surface of the lysosome), promotes biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane (PM), maintains the proper levels and bilayer distribution of all PM components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins), which are needed for the membrane expansion that accompanies cell growth and division and for combating insults to PM integrity. This review summarizes our current understanding of the assembly, structural features, subcellular distribution, and function and regulation of TORC2, obtained largely through studies conducted with Saccharomyces cerevisiae.

2.
Annu Rev Biochem ; 90: 709-737, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33606955

RESUMO

Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.


Assuntos
Endocitose/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico , Transdução de Sinais
3.
Cell ; 175(2): 387-399.e17, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270043

RESUMO

HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adulto , Linfócitos B/imunologia , Linhagem Celular , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica/métodos , Anticorpos Anti-HIV/imunologia , Infecções por HIV/fisiopatologia , HIV-1/patogenicidade , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Masculino , Pessoa de Meia-Idade
4.
Annu Rev Cell Dev Biol ; 34: 29-58, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30110558

RESUMO

Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.


Assuntos
Adesão Celular/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Transporte Proteico/genética , Receptores de Fatores de Crescimento/genética , Membrana Celular/genética , Núcleo Celular/genética , Endossomos/genética , Humanos , Fosfotransferases/genética
5.
Cell ; 167(6): 1623-1635.e14, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889239

RESUMO

Retromer is a multi-protein complex that recycles transmembrane cargo from endosomes to the trans-Golgi network and the plasma membrane. Defects in retromer impair various cellular processes and underlie some forms of Alzheimer's disease and Parkinson's disease. Although retromer was discovered over 15 years ago, the mechanisms for cargo recognition and recruitment to endosomes have remained elusive. Here, we present an X-ray crystallographic analysis of a four-component complex comprising the VPS26 and VPS35 subunits of retromer, the sorting nexin SNX3, and a recycling signal from the divalent cation transporter DMT1-II. This analysis identifies a binding site for canonical recycling signals at the interface between VPS26 and SNX3. In addition, the structure highlights a network of cooperative interactions among the VPS subunits, SNX3, and cargo that couple signal-recognition to membrane recruitment.


Assuntos
Proteínas de Transporte de Cátions/química , Complexos Multiproteicos/química , Nexinas de Classificação/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Espalhamento a Baixo Ângulo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Cell ; 166(1): 152-66, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27368102

RESUMO

Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Proteína Sequestossoma-1/metabolismo , Vesículas Transportadoras/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
7.
Mol Cell ; 83(11): 1856-1871.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267906

RESUMO

The pentameric FERRY Rab5 effector complex is a molecular link between mRNA and early endosomes in mRNA intracellular distribution. Here, we determine the cryo-EM structure of human FERRY. It reveals a unique clamp-like architecture that bears no resemblance to any known structure of Rab effectors. A combination of functional and mutational studies reveals that while the Fy-2 C-terminal coiled-coil acts as binding region for Fy-1/3 and Rab5, both coiled-coils and Fy-5 concur to bind mRNA. Mutations causing truncations of Fy-2 in patients with neurological disorders impair Rab5 binding or FERRY complex assembly. Thus, Fy-2 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via Rab5. Our study provides mechanistic insights into long-distance mRNA transport and demonstrates that the particular architecture of FERRY is closely linked to a previously undescribed mode of RNA binding, involving coiled-coil domains.


Assuntos
Proteínas de Transporte Vesicular , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/análise , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/genética , Endossomos/metabolismo
8.
Annu Rev Cell Dev Biol ; 30: 255-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288114

RESUMO

In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.


Assuntos
Comunicação Celular/fisiologia , Micropartículas Derivadas de Células/fisiologia , Vesículas Transportadoras/fisiologia , Animais , Linfócitos B/metabolismo , Transporte Biológico , Centrifugação com Gradiente de Concentração , Técnicas Citológicas , Endossomos/fisiologia , Endossomos/ultraestrutura , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Exossomos/fisiologia , Líquido Extracelular/metabolismo , Humanos , Fusão de Membrana , Lipídeos de Membrana/fisiologia , Proteínas de Membrana/fisiologia , MicroRNAs/metabolismo , Neoplasias/metabolismo , Células Procarióticas/metabolismo , Células Procarióticas/ultraestrutura , RNA Mensageiro/metabolismo , Reticulócitos/metabolismo , Proteínas SNARE/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia
9.
EMBO J ; 42(2): e112287, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36644906

RESUMO

Proteins exit from endosomes through tubular carriers coated by retromer, a complex that impacts cellular signaling, lysosomal biogenesis and numerous diseases. The coat must overcome membrane tension to form tubules. We explored the dynamics and driving force of this process by reconstituting coat formation with yeast retromer and the BAR-domain sorting nexins Vps5 and Vps17 on oriented synthetic lipid tubules. This coat oligomerizes bidirectionally, forming a static tubular structure that does not exchange subunits. High concentrations of sorting nexins alone constrict membrane tubes to an invariant radius of 19 nm. At lower concentrations, oligomers of retromer must bind and interconnect the sorting nexins to drive constriction. Constricting less curved membranes into tubes, which requires more energy, coincides with an increased surface density of retromer on the sorting nexin layer. Retromer-mediated crosslinking of sorting nexins at variable densities may thus tune the energy that the coat can generate to deform the membrane. In line with this, genetic ablation of retromer oligomerization impairs endosomal protein exit in yeast and human cells.


Assuntos
Saccharomyces cerevisiae , Nexinas de Classificação , Humanos , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Constrição , Endossomos/metabolismo
10.
Semin Immunol ; 66: 101711, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36645993

RESUMO

Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.


Assuntos
Células Apresentadoras de Antígenos , Apresentação Cruzada , Humanos , Células Apresentadoras de Antígenos/metabolismo , Linfócitos T Citotóxicos , Antígenos , Antígenos de Histocompatibilidade Menor , Biologia , Células Dendríticas , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I
11.
Proc Natl Acad Sci U S A ; 121(44): e2409407121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39441629

RESUMO

Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. In Arabidopsis, endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation. Through morphometric analyses of tomographic reconstructions of endosomes across yeast, algae, and various land plants, we have found that ILV concatenation is widespread within plant species, but only prevalent in seed plants, especially in flowering plants. Multiple budding sites that require the formation of pores in the limiting membrane were only identified in hornworts and seed plants, suggesting that this mechanism has evolved independently in both plant lineages. To identify the conditions under which these multiple budding sites can arise, we used particle-based molecular dynamics simulations and found that changes in ESCRT filament properties, such as filament curvature and membrane binding energy, can generate the membrane shapes observed in multiple budding sites. To understand the relationship between membrane budding activity and ILV network topology, we performed computational simulations and identified a set of membrane remodeling parameters that can recapitulate our tomographic datasets.


Assuntos
Endossomos , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Arabidopsis/metabolismo , Tomografia com Microscopia Eletrônica , Simulação de Dinâmica Molecular
12.
Trends Biochem Sci ; 47(3): 235-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34810081

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action.


Assuntos
Canais de Cálcio , Proteínas de Transporte , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Lisossomos/metabolismo , NADP/análogos & derivados , NADP/metabolismo
13.
Traffic ; 25(3): e12932, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528836

RESUMO

Alzheimer's disease is associated with increased levels of amyloid beta (Aß) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the ß-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aß secretion. A 20°C block in cargo exit from the Golgi confirmed ß- and γ-secretase processing of APPswe in the Golgi. Inhibition of the ß-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aß production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aß production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Suécia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Mutação
14.
EMBO J ; 41(10): e109646, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35466426

RESUMO

Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2 , a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX-BAR proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX-BAR complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.


Assuntos
Endossomos , Nexinas de Classificação , Animais , Endossomos/metabolismo , Lisossomos/metabolismo , Mamíferos , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Nexinas de Classificação/metabolismo
15.
EMBO J ; 41(9): e109352, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35318705

RESUMO

Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3-phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2-mediated hyperactivation of Cdk5 downstream of receptor- and activity-dependent calcium influx. Our results unravel an unexpected function for PI(3)P-containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P-producing VPS34 kinase in neurological disease and neurodegeneration.


Assuntos
Transmissão Sináptica , Vesículas Sinápticas , Endocitose/fisiologia , Endossomos , Neurotransmissores , Fosfatos de Fosfatidilinositol , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
16.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
17.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39308425

RESUMO

Unambiguous targeting of cellular structures for in situ cryo-electron microscopy in the heterogeneous, dense and compacted environment of the cytoplasm remains challenging. Here, we have developed a cryogenic correlative light and electron microscopy (cryo-CLEM) workflow that utilizes thin cells grown on a mechanically defined substratum for rapid analysis of organelles and macromolecular complexes by cryo-electron tomography (cryo-ET). We coupled these advancements with optogenetics to redistribute perinuclear-localised organelles to the cell periphery, allowing visualisation of organelles that would otherwise be positioned in cellular regions too thick for cryo-ET. This reliable and robust workflow allows for fast in situ analyses without the requirement for cryo-focused ion beam milling. Using this protocol, cells can be frozen, imaged by cryo-fluorescence microscopy and be ready for batch cryo-ET within a day.


Assuntos
Microscopia Crioeletrônica , Optogenética , Organelas , Microscopia Crioeletrônica/métodos , Organelas/ultraestrutura , Optogenética/métodos , Tomografia com Microscopia Eletrônica/métodos , Humanos , Microscopia de Fluorescência/métodos
18.
J Cell Sci ; 137(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39206621

RESUMO

Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. The ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within the C-terminal region of RNF13 that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by this variant of the dileucine sorting motif of RNF13.


Assuntos
Motivos de Aminoácidos , Endossomos , Transporte Proteico , Ubiquitina-Proteína Ligases , Humanos , Endossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HeLa , Ligação Proteica , Complexo de Golgi/metabolismo , Sequência de Aminoácidos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética
19.
Immunity ; 47(1): 51-65.e7, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28666573

RESUMO

Activation of the pseudokinase mixed lineage kinase domain-like (MLKL) upon its phosphorylation by the protein kinase RIPK3 triggers necroptosis, a form of programmed cell death in which rupture of cellular membranes yields release of intracellular components. We report that MLKL also associated with endosomes and controlled the transport of endocytosed proteins, thereby enhancing degradation of receptors and ligands, modulating their induced signaling and facilitating the generation of extracellular vesicles. This role was exerted on two quantitative grades: a constitutive one independent of RIPK3, and an enhanced one, triggered by RIPK3, where the association of MLKL with the endosomes was enhanced, and it was found to bind endosomal sorting complexes required for transport (ESCRT) proteins and the flotillins and to be excluded, together with them, from cells within vesicles. We suggest that release of phosphorylated MLKL within extracellular vesicles serves as a mechanism for self-restricting the necroptotic activity of this protein.


Assuntos
Apoptose/imunologia , Endossomos/metabolismo , Vesículas Extracelulares/metabolismo , Necrose/imunologia , Proteínas Quinases/metabolismo , Linhagem Celular , Humanos , Mutação/genética , Fosforilação , Engenharia de Proteínas , Proteínas Quinases/genética , Transporte Proteico , Proteômica , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
20.
Circ Res ; 134(5): 505-525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422177

RESUMO

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Assuntos
Cardiomiopatias , Resistência à Insulina , Animais , Camundongos , Ratos , Adenosina Trifosfatases , Arginina , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Antígenos CD36/genética , Fibrose , Inflamação , Leucina , Lipídeos , Lisina , Alvo Mecanístico do Complexo 1 de Rapamicina , Miócitos Cardíacos , Mononucleotídeo de Nicotinamida , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA